National Academies Press: OpenBook
« Previous: Contents
Page 15
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2021. Improved Prediction Models for Crash Types and Crash Severities. Washington, DC: The National Academies Press. doi: 10.17226/26164.
×
Page 15
Page 16
Suggested Citation:"Summary." National Academies of Sciences, Engineering, and Medicine. 2021. Improved Prediction Models for Crash Types and Crash Severities. Washington, DC: The National Academies Press. doi: 10.17226/26164.
×
Page 16

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

xvi  SUMMARY This report describes efforts to develop improved crash prediction methods for crash type and severity  for the three facility types covered in the 2010 Highway Safety Manual (HSM)—specifically, two‐lane rural  highways, multilane rural highways, and urban/suburban arterials. For each, models were estimated for  undivided and divided (multilane rural and urban/suburban only) segments and three‐ and four‐leg stop‐ controlled  intersections  and  four‐leg  signal‐controlled  intersections  (also  three‐leg  signal‐controlled  intersections  for urban/suburban arterials). The models use data  for  segments and  intersections with  “base conditions” that are defined specifically for each facility type. Only the observations that satisfy the  defined base conditions were used for estimating these models. For urban/suburban arterial segments,  because no sites met all base conditions for roadside fixed objects and median width, these variables were  included  in  the models  only  if  considered  appropriate  for  that  crash  type  and  if  the  variable  was  statistically significant in the model and with the expected direction of effect. For some crash types, the  number of driveways was also directly  included  in the models where warranted. These base condition  models provide predictions that can be adjusted for actual conditions at a place of prediction, such as lane  and shoulder width, the presence of lighting, and other pertinent factors. Content describing these models  and instructions for applying them has been prepared for inclusion in the second edition of the HSM. A  revisit of the HSM’s procedure for calibrating prediction models for transfer to other jurisdictions is also  described and recommendations for updating that procedure offered. Average condition models were  also estimated using all available valid data points available from the state data used for each facility type;  these are provided in an appendix.   For most facility types, crash count models are estimated to predict four aggregated crash types: same‐ direction,  intersecting‐direction,  opposite‐direction,  and  single‐vehicle  crashes.    For  urban/suburban  arterial segments, crash count models are estimated for more disaggregated types—for example, rear  end, sideswipe‐same‐direction, combined head‐on and opposite‐direction sideswipe crashes and night  crashes. Models for predicting total crashes were also estimated for all facility types. The count of total  crashes may not be equal to the sum of the individual crash type counts because in a few cases there may  have been missing variables that would have prevented a crash from being identified as a particular type  of crash, but  it was still  included  in total crashes.  If a total crash prediction  is required, the total crash  model should be used rather than adding together all of the crash type models.   For  all  facility  types  except  urban/suburban  arterial  segments,  crash  severity  count models  are  also  estimated for each aggregated crash type and for total crashes. For urban/suburban arterial segments,  they  are estimated  for  total  crashes only.  These models  are estimated  cumulatively—that  is,  for  the  following levels:   Crashes resulting in fatal and incapacitating injuries (KA)  Crashes resulting in fatal, incapacitating, and non‐incapacitating injuries (KAB)  Crashes resulting in fatal, incapacitating, non‐incapacitating, and possible injuries (KABC)  All severity levels (KABCO)

xvii  The sample of fatal injury crashes (K) was too small for all facility types to estimate meaningful models.  Average proportions must be computed using local jurisdiction data to allocate KA crashes between K and  A if a K crash predictive model is needed, provided the count of these crashes is large enough to estimate  a proportion reliably.  If a count  for a specific crash  type and  level of severity  is required,  for example  single‐vehicle B crashes, the prediction for single‐vehicle KA crashes can be subtracted from the prediction  for single‐vehicle KAB crashes to get a prediction for single‐vehicle B crashes.   Also revisited was  the procedure  for calibrating HSM prediction models  for application  in  jurisdictions  other than the locations providing the data used to estimate the safety performance functions (SPFs). The  current HSM method was compared with methods proposed by other researchers by calibrating the newly  estimated models with data from other jurisdictions. This comparison included evaluating the association  between calibration accuracy and calibration sample size, using both a constant calibration factor and an  estimated calibration function that relates the factor to the model prediction. The findings suggest the  procedure provided by the HSM is still reasonable, although the calibration function yields better accuracy  than the constant factor, and sample sizes required for a reliable calibration are sometimes larger than  the minimum recommended and can only be iteratively determined. The calibration function could not  be estimated with very small sample sizes.  It is noted that estimation and application of crash prediction models is dependent upon having datasets  of sufficient size and quality. It was not possible to estimate models for K only crashes for any crash types  or in total for any facility type due to the small number of these crashes in any of the data sets. For some  crash types, such as same direction crashes, KA crash models also could not be estimated. It is also noted  that many of the roadway characteristic variables that are necessary for estimating and applying these  models,  for  example  numbers  of  driveways  of  different  types  and  intersection  skew  angles,  are  not  routinely archived by all transportation agencies. For estimation and validation of these models  it was  necessary to engage in data collection efforts to augment data provided by the transportation agencies  that were used in the project. In order to use these prediction procedures, most agencies will likely need  to augment their own data archives with additional roadway characteristics.      Appendices to the report provide the following:  1. Documentation of additional models that were estimated—specifically, for average crash models that were estimated using all available data, not just those that met the base conditions 2. Documentation of exploration of a probabilistic approach to predicting crash severity that is not being recommended for prediction 3. Content that has been prepared for inclusion in the second edition of the HSM

Next: 1. Background »
Improved Prediction Models for Crash Types and Crash Severities Get This Book
×
 Improved Prediction Models for Crash Types and Crash Severities
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The release of the Highway Safety Manual (HSM) by the American Association of State Highway and Transportation Officials (AASHTO) in 2010 was a landmark event in the practice of road safety analysis. Before it, the United States had no central repository for information about quantitative road safety analysis methodology.

The TRB National Cooperative Highway Research Program's NCHRP Web-Only Document 295: Improved Prediction Models for Crash Types and Crash Severities describes efforts to develop improved crash prediction methods for crash type and severity for the three facility types covered in the HSM—specifically, two‐lane rural highways, multilane rural highways, and urban/suburban arterials.

Supplemental materials to the Web-Only Document include Appendices A, B, and C (Average Condition Models, Crash Severities – Ordered Probit Fractional Split Modeling Approach, and Draft Content for Highway Safety Manual, 2nd Edition).

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!