National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/26302.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/26302.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/26302.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/26302.
×
Page R4
Page v
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/26302.
×
Page R5
Page vi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/26302.
×
Page R6
Page vii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/26302.
×
Page R7
Page viii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/26302.
×
Page R8

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

© 2021 National Academy of Sciences. All rights reserved. NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM Systematic, well-designed, and implementable research is the most effective way to solve many problems facing state departments of transportation (DOTs) administrators and engineers. Often, highway problems are of local or regional interest and can best be studied by state DOTs individually or in cooperation with their state universities and others. However, the accelerating growth of highway transportation results in increasingly complex problems of wide interest to highway authorities. These problems are best studied through a coordinated program of cooperative research. Recognizing this need, the leadership of the American Association of State Highway and Transportation Officials (AASHTO) in 1962 initiated an objective national highway research program using modern scientific techniques— the National Cooperative Highway Research Program (NCHRP). NCHRP is supported on a continuing basis by funds from participating member states of AASHTO and receives the full cooperation and support of the Federal Highway Administration (FHWA), United States Department of Transportation, under Agreement No. 693JJ31950003. COPYRIGHT INFORMATION Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein. Cooperative Research Programs (CRP) grants permission to reproduce material in this publication for classroom and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply endorsement by TRB and any of its program sponsors of a particular product, method, or practice. It is expected that those reproducing the material in this document for educational and not-for-profit uses will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from CRP. DISCLAIMER To facilitate more timely dissemination of research findings, this pre-publication document is taken directly from the submission of the research agency. The material has not been edited by TRB. The opinions and conclusions expressed or implied in this document are those of the researchers who performed the research. They are not necessarily those of the Transportation Research Board; the National Academies of Sciences, Engineering, and Medicine; the FHWA; or the program sponsors. The Transportation Research Board, the National Academies, and the sponsors of the National Cooperative Highway Research Program do not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the object of the report. This pre-publication document IS NOT an official publication of the Cooperative Research Programs; the Transportation Research Board; or the National Academies of Sciences, Engineering, and Medicine. Recommended citation: Christensen, D. W., and N. Tran. 2021. Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures. Pre-publication draft of NCHRP Research Report 982. Transportation Research Board, Washington, D.C.

ii TABLE OF CONTENTS SUMMARY .................................................................................................................................... 1 Recommendations ....................................................................................................................... 4 CHAPTER 1. BACKGROUND ..................................................................................................... 7 Problem: Fatigue in Asphalt Pavements ..................................................................................... 7 Factors Affecting Fatigue Cracking in Asphalt Concrete Pavements ..................................... 8 Previous Research Related to Asphalt Binder Fatigue Performance .............................................................................................................. 10 How Asphalt Binders Affect the Fatigue Performance of Asphalt Mixtures ........................ 10 Low Temperature Cracking and Thermal Fatigue Damage .................................................. 12 Binder Rheology, Adhesion and Healing .............................................................................. 14 Laboratory Aging of Asphalt Binders and Mixtures ............................................................. 15 What are the Problems with the Existing Binder Fatigue Specification Test? ..................... 16 Review and Selection of Binder Fatigue Tests for In-Depth Evaluation in NCHRP 9-59 ... 17 Selection of Final Asphalt Binder Tests ................................................................................ 19 Characterizing Mixture Fatigue Performance in the Laboratory .......................................... 19 Objective of NCHRP 9-59 ........................................................................................................ 20 Scope of NCHRP 9-59 .............................................................................................................. 20 Organization of this Report ................................................................................................... 22 CHAPTER 2. RESEARCH APPROACH .................................................................................... 23 Materials .................................................................................................................................... 23 Binders ................................................................................................................................... 23 Laboratory Test Program .......................................................................................................... 26 Binders ................................................................................................................................... 26 NCHRP 9-59 Mixtures .......................................................................................................... 27 Data Analysis ............................................................................................................................ 32 Model Used in Analyzing Mixture Fatigue and Binder Test Data ........................................ 32 Analysis of Mixture Fatigue Data ......................................................................................... 36 Traditional Analysis of Bending Beam Fatigue Data ........................................................... 36 Simplified Viscoelastic Continuum Damage Analysis of Uniaxial Fatigue Data ................. 36 Analysis of Binder Test Data ................................................................................................ 38

iii Comparison of Mixture Fatigue Data and Binder Test Data ................................................. 40 Analysis of Data from Healing Experiment .......................................................................... 41 CHAPTER 3. FINDINGS AND APPLICATIONS ...................................................................... 43 Results of Laboratory Testing and Data Analysis ..................................................................... 43 Mixture Fatigue Tests Results ............................................................................................... 43 Binder Test Results ............................................................................................................... 52 Comparison of Mixture Fatigue and Binder Properties ........................................................ 53 Comparisons for NCHRP 9-59 Binders ................................................................................ 58 Healing Experiment ............................................................................................................... 60 Layered Elastic Analyses .......................................................................................................... 64 Layered Elastic Analysis and Potential Fatigue Specification Parameters ........................... 67 Effect of Improper Grade Selection on Fatigue Life ............................................................. 71 Analaysis of Potential Binder Fatigue Specification Parameters .............................................. 73 Values for Specification Parameters ..................................................................................... 73 Validation Testing ..................................................................................................................... 82 Field Validation Sites ............................................................................................................ 82 Analysis of Second FHWA ALF Fatigue Experiment .......................................................... 90 Discussion ................................................................................................................................. 94 Summary .................................................................................................................................... 94 Some Comments on the Observed Performance of Polymer-Modified Binders in NCHRP 9-59 ................................................................................................... 99 Limitations of Findings ....................................................................................................... 101 CHAPTER 4. CONCLUSIONS AND SUGGESTED RESEARCH ......................................... 103 Conclusions ............................................................................................................................. 103 Recommendations ................................................................................................................... 104 Guidance/Implementation Plan ............................................................................................... 106 Early Implementation Activities—Up to One Year after Project Completion ................... 106 Late Implementation Activities—A Year or More after Project Completion ..................... 107 Barriers to Implementation .................................................................................................. 108 References ............................................................................................................................... 108 APPENDIX A: REVIEW OF EXISTING BINDER FATIGUE TESTS AND SELECTION FOR FURTHER EVALUATION AS PART OF NCHRP 9-59 ............. 111 Introduction ............................................................................................................................. 111

iv Review of Current Binder Fatigue Tests ................................................................................. 111 Ratings of Candidate Binder Fatigue Tests ............................................................................. 121 APPENDIX B: EVALUATION AND SELECTION OF MIXTURE FATIGUE TESTS FOR USE IN NCHRP 9-59 ........................................................................................ 126 Introduction ............................................................................................................................. 126 Bending Beam Fatigue ............................................................................................................ 126 Correlation of Bending Beam Fatigue Results to Field Performance and Asphalt Binder Properties. ............................................................................................ 128 Uniaxial Fatigue Testing ......................................................................................................... 137 Texas Overlay Test .................................................................................................................. 138 Correlation of Overlay Tests Results to Field Performance ................................................... 143 Mixture Cracking Tests Selected for Use in Related Project NCHRP 9-57 ........................... 148 Mixture Fatigue Test Methods Selected for Use in NCHRP 9-59 .......................................... 149 APPENDIX C: MATERIALS AND METHODS USED IN MIXTURE FATIGUE TESTS ... 150 Materials.................................................................................................................................. 150 Test Procedures....................................................................................................................... 151 APPENDIX D: ANALYSIS OF MIXTURE FATIGUE AND BINDER TEST DATA ........... 155 Introduction ............................................................................................................................. 155 Modeling Fatigue In Asphalt Concrete ................................................................................... 155 A New Approach To Analyzing Asphalt Concrete Fatigue Damage ..................................... 156 Analysis of Mixture Fatigue and Binder Test Data ................................................................. 161 Comparison of Mixture Fatigue FFPR With Binder FFPR and R-Value ............................... 175 Summary and Discussion ........................................................................................................ 181 Conclusions ............................................................................................................................. 181 References ............................................................................................................................... 182 APPENDIX E: LABORATORY TEST DATA SUMMARY TABLES ................................... 183

v LIST OF TABLES Table 1. Correlation of Binder Tests with Mix Fatigue Performance from FHWA ALF Study (Gibson et al., 2012)*.............................................................................................................. 12 Table 2. Ratings of Candidate Binder Fatigue Tests .................................................................... 18 Table 3. Characteristics of NCHRP 9-59 Asphalt Binders. .......................................................... 23 Table 4. SHRP Core Asphalts (University of California, Berkeley, 1994) .................................. 24 Table 5. Binders from ALF II Fatigue Experiment (Gibson et al., 2012). ................................... 25 Table 6. NCHRP 1-19 Binders (Pellinen, 2001). .......................................................................... 25 Table 7. Regression Coefficients and r2 for Bending Beam Fatigue Transfer Functions ............. 45 Table 8. Regression Coefficients and C-S Fit Functions .............................................................. 47 Table 9. Summary of Non-Linear Least Squares Model for Flexural Fatigue. ............................ 48 Table 10. Flexural Fatigue Model Parameter Estimates ............................................................... 48 Table 11. Binder R-Values and FFPR Values. ............................................................................. 53 Table 12. Binder Grading Information for 20 North American Cities ......................................... 80 Table 13. Proposed Binder Fatigue Test Temperatures ................................................................ 81 Table 14. General Characteristics of Field Validation Sites ......................................................... 83 Table 15. Climate Data and Binder Grading Information for Field Validation Sites ................... 83 Table 16. Structure of Field Validation Sites................................................................................ 84 Table 17. Cracking Data for Field Validation Sites ...................................................................... 84 Table 18. Revised Ratings of Candidate Binder Fatigue Tests. ................................................... 95

vi LIST OF FIGURES Figure 1. Alligator Cracking at the NCAT Test Track. .................................................................. 7 Figure 2. Reflective Cracking in Asphalt Concrete Overlay (Miller and Bellinger, 2003). ........... 8 Figure 3. Relationship between Penetration Index and Rheological Index (R-Value) for SHRP Core Asphalts (University of California, 1994). ..................................................................... 11 Figure 4. Relationship Between Adhesion and Loss Tangent for a Polymer Gel (Grillet et al., 2012). ...................................................................................................................................... 15 Figure 5. Plot of G” = |G*| × sin δ at 25°C and 10 rad/s for Zaca-Wigmore Test Road, Estimated from Penetration Data (University of California, 1994). ........................................................ 16 Figure 6. IPC Global BBF Testing Apparatus with Fixed Reference Retrofit. ............................ 28 Figure 7. Example of Bending Beam Fatigue Failure Point ......................................................... 29 Figure 8. Uniaxial Fatigue Test Setup. ......................................................................................... 30 Figure 9. Example of Failure Point in Uniaxial Fatigue Test. ...................................................... 31 Figure 10. Failure Envelopes as Reported by Heukelom (1966), and as Determined During NCHRP 9-59 from Binder Tests and Mixture Fatigue Tests, along with Data Points from Binder Testing. ........................................................................................................................ 34 Figure 11. Relationship Between Fatigue Exponent and Phase Angle for SHRP Asphalt AAD-1 (University of California, Berkeley, 1994). Included is the line representing the relationship determined for the GFTAB model. .......................................................................................... 35 Figure 12. Results of Fatigue Healing Experiment for Binder P at 30°C. Failure under continuous loading occurred at a damage index of 4.97 × 10-9. ............................................ 42 Figure 13. Cycles to Failure versus Micro-strain at 20°C. ........................................................... 44 Figure 14. Cycles to Failure versus Micro-strain at 10°C. ........................................................... 45 Figure 15. GR Values versus Cycles to Failure. ............................................................................ 46 Figure 16. Cycles to Failure at GR = 100. ..................................................................................... 46 Figure 17. Plot of Predicted and Observed Cycles to Failure for Mixture Flexural Fatigue Tests. ................................................................................................................................................. 49 Figure 18. +/− 2s Confidence Limits for Flexural Fatigue FFPR Values. .................................... 50 Figure 19. +/− 2s Confidence Limits for Uniaxial Fatigue FFPR Values. ................................... 51 Figure 20. Comparison of FFPR from Uniaxial Fatigue Testing with FFPR from Flexural Fatigue Testing. Error bars show pooled two standard deviation error limits. .................................. 52 Figure 21. Mixture FFPR as a Function of Christensen-Anderson R-value. Error bars represent +/- 2 × standard error............................................................................................................. 54 Figure 22. FFPR from SDENT Extension as a Function of R-value. Error bars represent +/- 2 × standard error. ........................................................................................................................ 55 Figure 23. Mixture FFPR as a Function of FFPR from SDENT Extension. Error bars represent +/- 2 × standard error............................................................................................................. 56 Figure 24. DENT extension as a function of estimated binder modulus, coded for polymer modification and binder R-value. ........................................................................................... 57 Figure 25. Mixture FFPR as a Function of FFPR from LAS Test Data. Error bars represent +/- 2 × standard error. ..................................................................................................................... 57

vii Figure 26. Mixture FFPR from Uniaxial Fatigue as a Function of Christensen-Anderson R-value. ................................................................................................................................................. 59 Figure 27. Mixture FFPR from Uniaxial Fatigue as a Function of SDENT FFPR. ..................... 59 Figure 28. Mixture FFPR from Flexural Fatigue as a Function of Christensen-Anderson R-value. ................................................................................................................................................. 60 Figure 29. Mixture FFPR from Flexural Fatigue as a Function of SDENT FFPR. ...................... 60 Figure 30. Mixture Healing as a Function of Binder Phase Angle at 0.13 rad/s. ......................... 61 Figure 31. Mixture Healing as a Function of Binder Phase Angle at 10 rad/s. ............................ 62 Figure 32. Mixture Healing as a Function of Binder Storage Modulus at 10 Hz. ........................ 62 Figure 33. Mixture Healing as a Function of Binder |G*| at 10 Hz. ............................................. 63 Figure 34. Mixture Healing as a Function of Initial Mix Modulus at 10 Hz. ............................... 63 Figure 35. Layered Elastic Analysis: Thin Pavement, Cycles to Failure as a Funciton of Binder Modulus, Coded for R-Value. ................................................................................................. 66 Figure 36. Layered Elastic Analysis: Thick Pavement, Cycles to Failure as a Function of Binder Modulus, Coded for R-value................................................................................................... 67 Figure 37. Layered Elastic Analysis: Thin Pavement, Cycles to Failure as a Function of |G*| sin δ, Coded for R-Value. ............................................................................................................. 68 Figure 38. Layered Elastic Analysis: Thin Pavement, Cycles to Failure as a Function of Glover- Rowe Parameter, Coded for R-value. ..................................................................................... 68 Figure 39. Layered Elastic Analysis: Thin Pavement, Cycles to Failure as a Function of |G*| × (R/2)2, Coded for R-value. ...................................................................................................... 69 Figure 40. Layered Elastic Analysis: Thick Pavement, Cycles to Failure as a Function of |G*| sin δ, Coded for R-value. .............................................................................................................. 70 Figure 41. Layered Elastic Analysis: Thick Pavement, Cycles to Failure as a Function of Glover- Rowe Parameter, Coded for R-value. ..................................................................................... 70 Figure 42. Layered Elastic Analysis: Thick Pavement, Cycles to Failure as a Function of |G*| × (R/2)2, Coded for R-value. ...................................................................................................... 71 Figure 43. Fatigue life at Normal Temperature vs Fatigue Life with 6°C Decrease in Temperature and 20 mm Increase in Pavement Thickness (thin pavement structure). .......... 72 Figure 44. Fatigue life at Normal Temperature vs Fatigue Life with 12°C Decrease in Temperature and 30 mm Increase in Pavement Thickness (thin pavement structure). .......... 72 Figure 45. Fatigue Strain Capacity as a Function of GRP for Flexural Fatigue Experiment Data. ................................................................................................................................................. 75 Figure 46. Fatigue Strain Capacity as a Function of |G*| (R/2)2 for Flexural Fatigue Experiment Data. ........................................................................................................................................ 76 Figure 47. Fatigue Strain Capacity as a Function of |G*| sin δ for Flexural Fatigue Experiment Data. ........................................................................................................................................ 76 Figure 48. Fatigue Strain Capacity as a Function of SDENT Extension for Flexural Fatigue Experiment Data. .................................................................................................................... 77 Figure 49. Phase Angle as a Function of |G*| for Potential Binder Fatigue Parameters. ............. 78 Figure 50. Average Pavement Temperature as a Function of Binder Fatigue Test Temperature (current grading system). ........................................................................................................ 81

viii Figure 51. Average Pavement Temperature as a Function of Binder Fatigue Test Temperature (proposed grading system). ..................................................................................................... 82 Figure 52. Fatigue Cracking as a Function of |G*| sin δ for Field Validation Sites, at Four Degrees Above Average Pavement Temperature and 10 rad/s. ............................................. 86 Figure 53. Fatigue Cracking as a Function of Glover-Rowe Parameter for Field Validation Sites, at Four Degrees Above Average Pavement Temperature and 10 rad/s. ................................. 86 Figure 54. Fatigue Cracking as a Function of |G*| (R/2)2 for Field Validation Sites, at Four Degrees Above Average Pavement Temperature and 10 rad/s. ............................................. 87 Figure 55. Fatigue Cracking as a Function of R-Value for Field Validation Sites. ...................... 87 Figure 56. Fatigue Cracking as a Function of |G*| sin δ for Field Validation Sites, at Proposed Binder Fatigue Test Temperature and 10 rad/s. ...................................................................... 88 Figure 57. Fatigue Cracking as a Function of Glover-Rowe Parameter for Field Validation Sites, at Proposed Binder Fatigue Test Temperature and 10 rad/s. .................................................. 89 Figure 58. Fatigue Cracking as a Function of |G*| (R/2)2 for Field Validation Sites, at Proposed Binder Fatigue Test Temperature and 10 rad/s. ...................................................................... 89 Figure 59. Fatigue Cracking as a Function of |G*| sin δ for Field Validation Sites, at Current Binder Fatigue Test Temperature and 10 rad/s. ...................................................................... 90 Figure 60. Fatigue Cracking as a Function of |G*| sin δ for FHWA ALF 100-mm Sections, at 23.1°C and 10 rad/s. ................................................................................................................ 91 Figure 61. Fatigue Cracking as a Function of Glover-Rowe Parameter for FHWA ALF 100-mm Sections, at 23.1°C and 10 rad/s. ............................................................................................ 91 Figure 62. Fatigue Cracking as a Function of |G*| (R/2)2 for FHWA ALF 100-mm Sections, at 23.1°C and 10 rad/s. ................................................................................................................ 92 Figure 63. Fatigue Cracking as a Function of R-Value for FHWA ALF 100-mm Sections, at 23.1°C and 10 rad/s. ................................................................................................................ 92 Figure 64. Proposed Binder Fatigue Specification as Applied to NCHRP 9-59 Binders after RTFOT/40-Hour PAV Aging. Coded for estimated fatigue performance. ............................ 93 Figure 65. Values for Glover-Rowe Parameter at Proposed Binder Fatigue Test Temperature and 10 rad/s for NCHRP 9-59 Binders. ....................................................................................... 101

Next: SUMMARY »
Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Traffic-associated fatigue damage is one of the major distresses in which flexible pavements fail. This type of distress is the result of many thousands—or even millions of wheel loads passing over a pavement.

The TRB National Cooperative Highway Research Program's pre-publication draft of NCHRP Research Report 982: Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures details these relationships and makes several conclusions and recommendations.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!