National Academies Press: OpenBook
« Previous: 6 Cross-Cutting Research-Wide Issues
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

References

Abazajian, K., P. Adshead, Z. Ahmed, S. W. Allen, D. Alonso, et al. 2016. CMB-S4 Science Book, 1st ed. arXiv 1610.02743. https://doi.org/10.2172/1352047.

Abazajian, K., G. Addison, P. Adshead, Z. Ahmed, S. W. Allen, et al. 2019. CMB-S4 Science Case, Reference Design, and Project Plan. arXiv 1907.04473.

Abitbol, M., Z. Ahmed, D. Barron, R. B. Thakur, A. N. Bender, et al. 2017. CMB-S4 Technology Book, 1st ed. https://doi.org/10.2172/1414402.

Abram, N. J., R. Mulvaney, F. Vimeux, S. J. Phipps, J. Turner, and M. H. England. 2014. Evolution of the Southern Annular Mode during the past millennium. Nature Climate Change 4:564-569. https://doi.org/10.1038/nclimate2235.

Abyzov, S. S., N. S. Duxbury, N. E. Bobin, M. Fukuchi, R. B. Hoover, H. Kanda, I. N. Mitskevich, A. L. Mulyukin, T. Naganuma, M. N. Poglazova, and M. V. Ivanov. 2006. Super-long anabiosis of ancient microorganisms in ice and terrestrial models for development of methods to search for life on Mars, Europa and other planetary bodies. Advances in Space Research 38:1191-1197.

Adhikari, S., E. R. Ivins, E. Larour, H. Seroussi, M. Morlighem, and S. Nowicki. 2014. Future Antarctic bed topography and its implications for ice sheet dynamics. Solid Earth 5(1):569-584.

Adusumilli, S., H. A. Fricker, B. Medley, L. Padman, and M. R. Siegfried. 2020. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nature Geoscience 13:616-620. https://doi.org/10.1038/s41561-020-0616-z.

AGI (American Geosciences Institute). 2020. Diversity in the Geosciences. Geoscience Currents. https://www.americangeosciences.org/sites/default/files/DB_2020-023-DiversityInTheGeosciences.pdf.

Aitken, A. R. A, J. L. Roberts, T. D. van Ommen, D. A. Young, N. R. Golledge, J. S. Greenbaum, D. D. Blankenship, and M. J. Siegert. 2016. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature 533:385-389. https://doi.org/10.1038/nature17447.

Albertson, R. C., W. Cresko, H. W. Detrich, and J. P. Postlethwait. 2009. Evolutionary mutant models for human disease. Trends in Genetics 25:74-81. https://doi.org/10.1016/j.tig.2008.11.006.

Arndt, J. E., H. W. Schenke, M. Jakobsson, F. Nitsche, G. Buys, B. Goleby, M. Rebesco, F. Bohoyo, J. K. Hong, J. Black, R. K. Greku, G. B. Udintsev, F. Barrios, W. Reynoso-Peralta, M. Taisei, and R. Wigley. 2013. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0—A new bathymetric compilation covering circum-Antarctic waters. Geophysical Research Letters 40:3111-3117. https://doi.org/10.1002/grl.50413.

Ashley, K. E., R. McKay, J. Etourneau, F. J. Jimenez-Espejo, A. Condron, A. Albot, X. Crosta, C. Riesselman, O. Seki, G. Massé, N. R. Golledge, E. Gasson, D. P. Lowry, N. E. Barrand, K. Johnson, N. Bertler, C. Escutia, R. Dunbar, and J. A. Bendle. 2021. Mid-Holocene Antarctic sea-ice increase driven by marine ice

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

sheet retreat. Climate of the Past 17:1-19. https://doi.org/10.5194/cp-17-1-2021.

Balkenhol, L., D. Dutcher, P. A. R. Ade, Z. Ahmed, E. Anderes, et al. 2021. Constraints on ΛCDM Extensions from the SPT-3G 2018 EE and TE Power Spectra. arXiv 2103.13618.

Balter-Kennedy, A., G. Bromley, G. Balco, H. Thomas, and M. S. Jackson. 2020. A 14.5-million-year record of East Antarctic Ice Sheet fluctuations from the central Transantarctic Mountains, constrained with cosmogenic 3He, 10Be, 21Ne, and 26Al. The Cryosphere 14:2647-2672. https://doi.org/10.5194/tc-14-2647-2020.

Barker, P. F., A. Camerlenghi, G. D. Acton, S. A. Brachfeld, E. A. Cowan, J. Daniels, E. W. Domack, C. Escutia, A. J. Evans, N. Eyles, Y. J. B. Guyodo, M. Iorio, M. Iwai, F. T. Kyte, C. Lauer, A. Maldonado, T. Moerz, L. E. Osterman, C. J. Pudsey, J. D. Schuffert, C. M. Sjunneskog, K. L. Vigar, A. L. Weinheimer, T. Williams, D. M. Winter, and T. C. W. Wolf-Welling. 1999. Proceedings of the Ocean Drilling Program: Initial Reports, Vol. 178: Antarctic Glacial History and Sea-Level Change. College Station, TX: International Ocean Discovery Program. https://doi.org/10.2973/odp.proc.Ir.178.1999.

Barletta, V. R., M. Bevis, B. E. Smith, T. Wilson, A. Brown, A. Bordoni, M. Willis, S. A. Khan, M. Rovira-Navarro, I. Dalziel, and R. Smalley. 2018. Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science 360(6395):1335-1339.

Barnes, J. M., T. Dias dos Santos, D. Goldberg, G. H. Gudmundsson, M. Morlighem, and J. De Rydt. 2021. The transferability of adjoint inversion products between different ice flow models. The Cryosphere 15:1975-2000.

Bassis, J. N., B. Berg, A. J. Crawford, and D. Benn. 2021. Transition to marine ice cliff instability controlled by ice thickness gradients and velocity. Science 372:1342-1344.

Begeman, C. B., S. Tulaczyk, L. Padman, M. King, M. R. Siegfried, T. O. Hodson, and H. A. Fricker. 2020. Tidal pressurization of the ocean cavity near an Antarctic ice shelf grounding line. Journal of Geophysical Research: Oceans 125:e2019JC015562. https://doi.org/10.1029/2019JC015562.

Bell, R. E., F. Ferraccioli, T. T. Creyts, D. Braaten, H. Corr, I. Das, D. Damaske, N. Frearson, T. A. Jordan, K. Rose, M. Studinger, and M. J. Wolovick. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science 331(6024):1592-1595. doi: 10.1126/science.1200109.

Bernard, R. E., and E. H. G. Cooperdock. 2018. No progress on diversity in 40 years. Nature Geoscience 11:292-295. https://doi.org/10.1038/s41561-018-0116-6.

Bertrand, E. M., M. A. Saito, Y. J. Jeon, and B. A. Neilan. 2011. Vitamin B-12 biosynthesis gene diversity in the Ross Sea: The identification of a new group of putative polar B-12 biosynthesizers. Environmental Microbiology 13:1285-1298.

BICEP/Keck Collaboration. 2021. BICEP/Keck XII: Constraints on axionlike polarization oscillations in the cosmic microwave background. Physical Review D 103:042002.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

BICEP/Keck and SPTpol Collaborations. 2021. A demonstration of improved constraints on primordial gravitational waves with delensing. Physical Review D 103:022004. https://doi.org/10.1103/PhysRevD.103.022004.

BICEP2/Keck Collaboration. 2018. Constraints on primordial gravitational waves using Planck, WMAP, and new BICEP2/Keck observations through the 2015 season. Physical Review Letters 121(22):221301. doi: 10.1103/PhysRevLett. 121.221301.

Bleem, L. E., S. Bocquet, B. Stalder, M. D. Gladders, P. A. R. Ade, et al. 2020. The SPTpol Extended Cluster Survey. Astrophysical Journal Supplement Series 247(1):25. doi: 10.3847/1538-4365/ab6993.

Boeckmann, G., C. Gibson, T. Kuhl, E. Moravec, J. Johnson, Z. Meulemans, and K. Slawny. 2021. Adaptation of the Winkie Drill for subglacial bedrock sampling. Annals of Glaciology 62(84):109-117. doi: 10.1017/aog.2020.73.

Bowman, J. S., B. A. Van Mooy, D. P. Lowenstein, H. F. Fredricks, C. M. Hansel, R. Gast, J. R. Collins, N. Couto, and H. W. Ducklow. 2021. Whole community metatranscriptomes and lipidomes reveal diverse responses among Antarctic phytoplankton to changing ice conditions. Frontiers in Marine Science 8:593566.

Brancato, V., E. Rignot, P. Milillo, M. Morlighem, J. Mouginot, A. B. Scheuchl, S. Jeong, P. Rizzoli, J. L. B. Bello, and P. Prats-Iraola. 2020. Grounding line retreat of Denman Glacier, East Antarctica, measured with COSMO‐SkyMed radar interferometry data. Geophysical Research Letters 47(7):e2019GL086291. https://doi.org/10.1029/2019GL086291.

Briggs, E. M., T. R. Martz, L. D. Talley, M. R. Mazloff, and K. S. Johnson. 2018. Physical and biological drivers of biogeochemical tracers within the seasonal sea ice zone of the Southern Ocean from profiling floats. Journal of Geophysical Research: Oceans 123(2):746-758. https://doi.org/10.1002/2017JC012846.

Brown, S., R. Nicholls, C. Woodroffe, S. Hanson, J. Hinkel, A. S. Kebede, B. Neumann, and A. T. Vafeidis. 2013. Sea-level rise impacts and responses: A global perspective. Pp. 117-149 in Coastal Hazards, edited by C. W. Finkl. Dordrecht, The Netherlands: Springer.

BRP (U.S. Antarctic Program Blue Ribbon Panel). 2012. More and Better Science in Antarctica Through Increased Logistical Effectiveness. Report of the U.S. Antarctic Program Blue Ribbon Panel at the request of the White House Office of Science and Technology Policy and the National Science Foundation. Washington, DC: National Science Foundation. https://www.nsf.gov/geo/opp/usap_special_review/usap_brp/rpt/antarctica_07232012.pdf.

Bushinsky, S. M., A. R. Gray, K. S. Johnson, and J. L. Sarmiento. 2017. Oxygen in the Southern Ocean from Argo floats: Determination of processes driving air-sea fluxes. Journal of Geophysical Research: Oceans 122(11):8661-8682. https://doi.org/10.1002/2017JC012923.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

Cary, S. C., I. R. McDonald, J. E. Barrett, and D. A. Cowan. 2010. On the rocks: The microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology 8:129-138.

Cavicchioli, R. 2015. Microbial ecology of Antarctic aquatic ecosystems. Nature Reviews Microbiology 13:691-706.

Cefarelli, A. O., M. E. Ferrario, G. O. Almandoz, A. G. Atencio, R. Akselman, and M. Vernet. 2010. Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: Morphology, distribution and abundance. Polar Biology 33:1463-1484. https://doi.org/10.1007/s00300-010-0794-z.

Chen, L., Y. Lu, W. Li, Y. Ren, M. Yu, S. Jiang, Y. Fu, J. Wang, S. Peng, K. T. Bilyk, K. R. Murphy, X. Zhuang, M. Hune, W. Zhai, W. Wang, Q. Xu, and C.-H. C. Cheng. 2019. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes. GigaScience 8(4):giz016. https://doi.org/10.1093/gigascience/giz016.

Christianson, K., M. Bushuk, P. Dutrieux, B. R. Parizek, I. R. Joughin, R. B. Alley, D. E. Shean, E. P. Abrahamsen, S. Anandakrishnan, K. J. Heywood, T. W. Kim, S. H. Lee, K. Nicholls, T. Stanton, M. Truffer, B. G. M. Webber, A. Jenkins, S. Jacobs, R. Bindschadler, and D. M. Holland. 2016. Sensitivity of Pine Island Glacier to observed ocean forcing. Geophysical Research Letters 43:10,817-10,825. https://doi.org/10.1002/2016GL070500.

Christner, B. C., J. C. Priscu, A. M. Achberger, C. Barbante, S. P. Carter, K. Christianson, A. B. Michaud, J. A. Mikucki, A. C. Mitchell, M. L. Skidmore, T. J. Vick-Majors, and WISSARD Science Team. 2014. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512:310-313. doi: 10.1038/nature13667.

Clyne, E. R., S. Anandakrishnan, A. Muto, R. B. Alley, and D. E. Voigt. 2020. Interpretation of topography and bed properties beneath Thwaites Glacier, West Antarctica using seismic reflection methods. Earth and Planetary Science Letters 550:116543. https://doi.org/10.1016/j.epsl.2020.116543.

CMB4 CDT (Cosmic Background Microwave Stage 4 Concept Definition Task Force). 2017. Report to the AAAC. https://www.nsf.gov/mps/ast/aaac/cmb_s4/report/CMBS4_final_report_NL.pdf.

Convey, P, J. A. E. Gibson, C. D. Hillenbrand, D. A. Hodgson, P. J. A. Pugh, J. L. Smellie, and M. I. Stevens. 2008. Antarctic terrestrial life—Challenging the history of the frozen continent? Biological Reviews 83(2):103-117.

Cook, C. P., T. van de Flierdt, T. J. Williams, S. R. Hemming, M. Iwai, et al. 2013. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nature Geosciences 6(9):765-769. https://doi.org/10.1038/ngeo1889.

Cornford, S. L., H. Seroussi, X. S. Asay-Davis, G. H. Gudmundsson, R. Arthern, et al. 2020. Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+). The Cryosphere 14(7):2283-2301. https://doi.org/10.5194/tc-14-2283-2020.

Crawford, A. J., D. I. Benn, J. Todd, J. A. Åström, J. N. Bassis, and T. Zwinger. Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

calving rate parameterization. Nature Communications 12:2701. https://doi.org/10.1038/s41467-021-23070-7.

Cui, X., H. Jeofry, J. S. Greenbaum, J. Guo, L. Li, L. E. Lindzey, F. A. Habbal, W. Wei, D. A. Young, N. Ross, M. Morlighem, L. M. Jong, J. L. Roberts, D. D. Blankenship, S. Bo, and M. J. Siegert. 2020. Bed topography of Princess Elizabeth Land in East Antarctica. Earth System Science Data 12(4):2765-2774. https://doi.org/10.5194/essd-12-2765-2020.

Daane, J. M., A. Dornburg, P. Smits, D. J. MacGuigan, M. B. Hawkins, T.J. Near, H. W. Detrich, and M. P. Harris. 2019. Historical contingency shapes adaptive radiation in Antarctic fishes. Nature Ecology & Evolution 3(7):1102-1109.

Das, I., R. Bell, T. A. Scambos, M. Wolovick, T. T. Creyts, M. Studinger, N. Frearson, J. P. Nicolas, J. T. M. Lenaerts, and M. R. van den Broeke. 2013. Influence of persistent wind scour on the surface mass balance of Antarctica. Nature Geoscience 6(5):367-371. https://doi.org/10.1038/ngeo1766.

Das, I., L. Padman, R. Bell, H. Fricker, K. Tinto, C. Hulba, C. Siddoway, T. Dhakal., N. Frearson, C. Mosbeux, I. Cordero, and M. Seigfried. 2020. Multi-decadal basal melt rates and structure of the Ross Ice Shelf, Antarctica, using airborne ice-penetrating radar. Journal of Geophysical Research: Earth Surface 125(3):e2019JF005241.

Davis, P. E. D., A. Jenkins, K. W. Nicholls, P. V. Brennan, E. Povl Abrahamsen, K. J. Heywood, P. Dutrieux, K.-H. Cho, and T.-W. Kim. 2018. Variability in basal melting beneath Pine Island Ice Shelf on weekly to monthly timescales. Journal of Geophysical Research: Oceans 123:8655-8669. https://doi.org/10.1029/2018JC014464.

de Boer, B., P. Stocchi, and R. S. W van de Wal. 2014. A fully coupled 3-D ice-sheet-sea-level model: Algorithm and applications. Geoscientific Model Development 7(5):2141-2156. https://doi.org/10.5194/gmd-7-2141-2014.

DeConto, R. M., and D. Pollard. 2016. Contribution of Antarctica to past and future sea. Nature 531:591-597. https://doi.org/10.1038/nature17145.

DeConto, R. M., D. Pollard, R. B. Alley, I. Velicogna, E. Gasson, N. Gomez, S. Sadai, A. Condron, D. M. Gilford, E. L. Ashe, and R. E. Kopp. 2021. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593(7857):83-89. https://doi.org/10.1038/s41586-021-03427-0.

Di Luzio, L., M. Giannotti, E. Nardi, and L. Visinelli. 2020. The landscape of QCD axion models. Physics Reports 870:1-117. https://doi.org/10.1016/j.physrep.2020.06.002.

Doeleman, S. S. 2017. Seeing the unseeable. Nature Astronomy 1:646. https://doi.org/10.1038/s41550-017-0278-y.

Dupont, T. K., and R. B. Alley. 2005. Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophysical Research Letters 32:L04503. doi: 10.1029/2004GL022024.

Eastman, J. T. 1993. Antarctic Fish Biology: Evolution in a Unique Environment. San Diego, CA: Academic Press.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

Escutia, C., H. Brinkhuis, A. Klaus, and the Expedition 318 Scientists. 2011. Wilkes Land Glacial History. Proceedings of the Integrated Ocean Drilling Program, Vol. 318. Tokyo, Japan: Integrated Ocean Drilling Program Management International, Inc. doi: 10.2204/iodp.proc.318.2011.

Escutia, C., R. M. DeConto, R. Dunbar, L. De Santis, A. Shevenell, and T. Naish. 2019. Keeping an eye on Antarctic ice sheet stability. Oceanography 32(1):32-46.

Event Horizon Telescope Collaboration. 2019. First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. Astrophysical Journal Letters 875:L1. https://doi.org/10.3847/2041-8213/ab0ec7.

Farman, J. C., B. G. Gardiner, and J. D. Shanklin. 1985. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207-210.

Fernandez, R., S. Gulick, E. Domack, A. Montelli, A. Leventer, A. Shevenell, B. Fredrick, and NBP1402 Science Party. 2018. Past ice stream and ice sheet changes on the continental shelf off the Sabrina Coast, East Antarctica. Geomorphology 317:10-22.

Fraser, C. I., A. K. Morrison, A. M. Hogg, E. C. Macaya, E. van Sebille, P. G. Ryan, A. Padovan, C. Jack, N. Valdivia, and J. M. Waters. 2018. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nature Climate Change 8:704-708.

Freedman, W. 2017. Cosmology at a crossroads. Nature Astronomy 1:0121. https://doi.org/10.1038/s41550-017-0121.

Fretwell, P., H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, et al. 2013. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 7(1):375-393. https://doi.org/10.5194/tc-7-375-2013.

Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting, and W. Winton, M. 2015. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 Models. Journal of Climate 28:862-886. https://doi.org/10.1175/JCLI-D-14-00117.1.

Fuchs, N., E. Scalco, W. H. C. F. Kooistra, P. Assmy, and M. Montresor. 2013. Genetic characterization and life cycle of the diatom Fragilariopsis kerguelensis. European Journal of Phycology 48(4):411-426. https://doi.org/10.1080/09670262.2013.849360.

Furst, J., G. Durand, F. Gillet-Chaulet, L. Tavard, M. Rankl, M. Braun, and O. Gagliardini. The safety band of Antarctic ice shelves. 2016. Nature Climate Change 6:479-482. https://doi.org/10.1038/nclimate2912.

Ghiglione, J. F., and A. E. Murray. 2012. Pronounced summer to winter differences and higher wintertime richness in coastal sub-Antarctic and Antarctic marine bacterioplankton. Environmental Microbiology 14:617-629.

Gilford, D. M., E. L. Ashe, R. M. DeConto, R. E. Kopp, D. Pollard, and A. Rovere. 2020. Could the last interglacial constrain projections of future Antarctic ice mass loss and sea-level rise? Journal of Geophysical Research: Earth Surface 125(10):e2019JF005418. doi: 10.1029/2019jf005418.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

Goehring, B. M., G. Balco, C. Todd, I. Moening-Swanson, and K. Nichols. 2019. Late-glacial grounding line retreat in the northern Ross Sea, Antarctica. Geology 47(4):291-294. doi: https://doi.org/10.1130/G45413.1.

Gohl, K., J. S. Wellner, A. Klaus, and the Expedition 379 Scientists. 2019. Expedition 379 Preliminary Report: Amundsen Sea West Antarctic Ice Sheet History. International Ocean Discovery Program. https://doi.org/10.14379/iodp.pr.379.2019.

Golledge, N. R., C. J. Fogwill, A. N. Mackintosh, and K. M. Buckley. 2012. Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing. Proceedings of the National Academy of Sciences of the United States of America 109(40):16052-16056.

Golledge, N. R., D. E. Kowalewski, T. R. Naish, R. H. Levy, C. J. Fogwill, and E. G. Gasson. 2015. The multi‐millennial Antarctic commitment to future sea‐level rise. Nature 526(7573):421-425.

Golledge, N. R., R. H. Levy, R. M. McKay, and T. R. Naish. 2017. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophysical Research Letters 44:2343-2351. https://doi.org/10.1002/2016GL072422.

Gomez, N., D. Pollard, and J. X. Mitrovica. 2013. A 3-D coupled ice sheet-sea level model applied to Antarctica through the last 40 ky. Earth and Planetary Science Letters 384:88-99.

Gomez, N., D. Pollard, and D. Holland. 2015. Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss. Nature Communications 6(1):8798.

Goodge, J., and J. Severinghaus. 2016. Rapid Access Ice Drill: A new tool for exploration of the deep Antarctic ice sheets and subglacial geology. Journal of Glaciology 62(236):1049-1064. doi: 10.1017/jog.2016.97.

Goordial, J., A. Davila, D. Lacelle, W. Pollard, M. M. Marinova, C. W. Greer, J. DiRuggiero, C. P. McKay, and L. G. Whyte. 2016. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME Journal 10:1613-1624.

Goyal, R., A. S. Gupta, M. Jucker, and M. H. England. 2021. Historical and projected changes in the Southern Hemisphere surface westerlies. Geophysical Research Letters 48(4):e2020GL090849.

Gray, A. R., K. S. Johnson, S. M. Bushinsky, S. C. Riser, J. L. Russell, L. D. Talley, R. Wanninkhof, N. L. Williams, and J. L. Sarmiento. 2018. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophysical Research Letters 45(17):9049-9057. https://doi.org/10.1029/2018GL078013.

Greenbaum, J. S., D. D. Blankenship, D. A. Young, T. G. Richter, J. L. Roberts, A. R. A. Aitken, B. Legresy, D. M. Schroeder, R. C. Warner, T. D. van Ommen, and M. J. Siegert. 2015. Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nature Geoscience 8:294-298.

Greene, C. A., D. D. Blankenship, D. E. Gwyther, A. Silvano, and E. van Wijk. 2017. Wind causes Totten Ice Shelf melt and acceleration. Science Advances 3(11):e1701681. doi: 10.1126/sciadv.1701681.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

Gruber, N., D. Clement, B. R. Carter, R. A. Feely, S. Van Heuven, M. Hoppema, M. Ishii, R. M. Key, A. Kozyr, S. K. Lauvset, C. L. Monaco, J. T. Mathis, A. Murata, A. Olsen, F. F. Perez, C. L. Sabine, T. Tanhua, and R. Wanninkhof. 2019a. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363:1193-1199. https://doi.org/10.1126/science.aau5153.

Gruber, N., P. Landschützer, and N. S. Lovenduski. 2019b. The variable Southern Ocean carbon sink. Annual Review of Marine Science 11:159-186. https://doi.org/10.1146/annurev-marine-121916-063407.

Gudmundsson, G. H., F. S. Paolo, S. Adusumilli, and H. A. Fricker. 2019. Instantaneous Antarctic ice‐sheet mass loss driven by thinning ice shelves. Geophysical Research Letters 46:13,903-13,909.

Gulick, S. P. S, A. E. Shevenell, A. Montelli, R. Fernandez, C. Smith, S. Warny, S. M. Bohaty, C. Sjunneskog, A. Leventer, B. Frederick, and D. D. Blankenship. 2017. Initiation and long-term instability of the East Antarctic Ice Sheet. Nature 552:225-229.

Halberstadt, A. R. W., H. Chorley, R. H. Levy, T. Naish, R. M. DeConto, E. Gasson, and D. E. Kowalewski. 2021. CO2 and tectonic controls on Antarctic climate and ice-sheet evolution in the mid-Miocene. Earth and Planetary Science Letters 564:116908. https://doi.org/10.1016/j.epsl.2021.116908.

Hartinger, M. D., Z. Xu, C. R. Clauer, Y. Yu, D. Weimer, H. Kim, V. Pilipenko, D. T. Welling, R. Behlke, and A. N. Willer. 2017. Associating ground magnetometer observations with current or voltage generators. Journal of Geophysical Research: Space Physics 122:7130-7141. doi: 10.1002/2017JA0241402016.

Hogan, K. A., R. D. Larter, A. G. C. Graham, R. Arthern, J. D. Kirkham, R. T. Minzoni, T. A. Jordan, R. Clark, V. Fitzgerald, A. K. Wåhlin, J. B. Anderson, C.-D. Hillenbrand, F. O. Nitsche, L. Simkins, J. A. Smith, K. Gohl, J. E. Arndt, J. Hong, and J. Wellner. 2020. Revealing the former bed of Thwaites Glacier using seafloor bathymetry: Implications for warm-water routing and bed controls on ice flow and buttressing. The Cryosphere 14:2883-2908. https://doi.org/10.5194/tc-14-2883-2020.

Holland, P. R., T. J. Bracegirdle, P. Dutrieux, A. Jenkins, and E. J. Steig. 2019. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nature Geoscience 12:718. https://doi.org/10.1038/s41561-019-0420-9.

Holschuh, N., K. Christianson, J. Paden, R. B. Alley, and S. Anandakrishnan. 2020. Linking postglacial landscapes to glacier dynamics using swath radar at Thwaites Glacier, Antarctica. Geology 48(3):268-272.

Howat, I. M., C. Porter, B. E. Smith, M. J. Noh, and P. Morin. 2019. The reference elevation model of Antarctica. The Cryosphere 13(2):665-674.

Huang, Y., C. Bian, Z. Liu, L. Wang, C. Xue, H. Huang, Y. Yi, X. You, W. Song, X. Mao, L. Song, and Q. Shi. 2020. The first genome survey of the Antarctic krill (Euphausia superba) provides a valuable genetic resource for polar biomedical research. Marine Drugs 18(4):185. doi: 10.3390/md18040185.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

Iakovenko, N. S., J. Smykla, P. Convey, E. Kasparova, I. A. Kozeretska, V. Trokhymets, I. Dykyy, M. Plewka, M. Devetter, Z. Duris, and K. Janko. 2015. Antarctic bdelloid rotifers: Diversity, endemism and evolution. Hydrobiologica 761:5-43.

IceCube Collaboration. 2018. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 361(6398):147-151.

IMBIE Team. 2018. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558(7709):219-222. https://doi.org/10.1038/s41586-018-0179-y.

IODP (International Ocean Discovery Program). 2011. Illuminating Earth’s Past, Present, and Future: Science Plan for 2013-2023. https://www.iodp.org/127-low-resolution-pdf-version/file.

IPCC (Intergovernmental Panel on Climate Change). 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, and N. M. Weyer. https://www.ipcc.ch/srocc.

IPICS (International Partnerships in Ice Core Sciences). n.d. History and Dynamics of the Last Interglacial Period from Ice Cores. White Paper. http://pastglobalchanges.org/download/docs/working_groups/ipics/white-papers/ipics_LIG.pdf.

ITGC (International Thwaites Glacier Collaboration). 2020. Community Values and Norms of Behavior. https://thwaitesglacier.org/sites/default/files/2020-10/ITGC_Community_Norms_and_Values_22July-2020-links.pdf.

Ito, T., A. Bracco, C. Deutsch, H. Frenzel, M. Long, and Y. Takano. 2015. Sustained growth of the Southern Ocean carbon storage in a warming climate. Geophysical Research Letters 42:4516-4522.

Jacobel, R. W., B. C. Welch, E. J. Steig, and D. P. Schneider. 2005. Glaciological and climatic significance of Hercules Dome, Antarctica: An optimal site for deep ice core drilling. Journal of Geophysical Research 110:F01015. doi: 10.1029/2004JF000188.

Jacobs, S., A. Jenkins, C. Giulivi, and P. Dutrieux.. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geoscience 4:519-523. https://doi.org/10.1038/ngeo1188.

Jenkins, A., D. Shoosmith, P. Dutrieux, S. Jacobs, T. W. Kim, S. H. Lee, H. K. Ha, and S. Stammerjohn. 2018. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nature Geoscience 11(10):733-738.

Johnson, J., T. Kuhl, G. Boeckmann, C. Gibson, J. Jetson, Z. Meulemans, K. Slawny, and J. M. Souney. 2020. Drilling operations for the South Pole Ice Core (SPICEcore) project. Annals of Glaciology 62(84):75-88. doi: 10.1017/aog.2020. 64.

Johnson, K. M., and G. E. Hofmann. 2017. Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification. BMC Genomics 18(1):812. doi: 10.1186/s12864-017-4161-0.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

Joughin, I., B. E. Smith, and B. Medley. 2014. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344(6185):735-738. doi: 10.1126/science.1249055.

Joughin, I., D. Shapero, B. Smith, P. Dutrieux, and M. Barham. 2021. Ice-shelf retreat drives recent Pine Island Glacier speedup. Science Advances 7(24):eabg3080.

Kennicutt, M. C., S. L. Chown, J. J. Cassano, D. Liggett, R. Massom, L. S. Peck, S. R. Rintoul, J. W. Storey, D. G. Vaughan, T. J. Wilson, and W. J. Sutherland. 2014. Polar research: Six priorities for Antarctic science (and supplementary information). Nature 512:523-525.

Kennicutt, M. C. II, Y. D. Kim, M. Rogan-Finnemore, S. Anandakrishnan, S. L. Chown, et al. 2016. Delivering 21st century Antarctic and Southern Ocean science. Antarctic Science 28(6):407-423.

Kennicutt, M. C. II, D. Bromwich, D. Liggett, B. Njåstad, L. Peck, S. R. Rintoul, C. Ritz, M. J. Siegert, A. Aitken, C. M. Brooks, and J. Cassano. 2019. Sustained Antarctic research: A 21st century imperative. One Earth 1(1):95-113.

Kim, H., C. R. Clauer, A. J. Gerrard, M. J. Engebretson, M. D. Hartinger, M. R. Lessard, J. Matzka, D. G. Sibeck, H. J. Singer, C. Stolle, D. R. Weimer, and Z. Xu. 2017. Conjugate observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events. Journal of Geophysical Research: Space Physics 122(7):7336-7352. doi: 10.1002/2017JA0241 08.

Kingslake, J., C. Martín, R. J. Arthern, H. F. J. Corr, and E. C. King. 2016. Ice-flow reorganization in West Antarctica 2.5 kyr ago dated using radar-derived englacial flow velocities. Geophysical Research Letters 43(17):9103-9112. https://doi.org/10.1002/2016GL070278.

Kingslake, J., R. P. Scherer, T. Albrecht, J. Coenen, R. D. Powell, R. Reese, N. D. Stansell, S. Tulaczyk, M. G. Wearing, and P. L., Whitehouse. 2018. Extensive retreat and re‐advance of the West Antarctic Ice Sheet during the Holocene. Nature 558(7710):430-434.

Kirkham, J. D., K. A. Hogan, R. D. Larter, N. S. Arnold, F. O. Nitsche, N. R. Golledge, and J. A. Dowdeswell. 2019. Past water flow beneath Pine Island and Thwaites glaciers, West Antarctica. The Cryosphere 13:1959-1981. https://doi.org/10.5194/tc-13-1959-2019.

Kirkham, J. D., K. A. Hogan, R. D. Larter, N. S. Arnold, F. O. Nitsche, G. Kuhn, K. Gohld, J. B. Andersone, and J. A., Dowdeswella. 2020. Morphometry of bedrock meltwater channels on Antarctic inner continental shelves: Implications for channel development and subglacial hydrology. Geomorphology 370:107369. https://doi.org/10.1016/j.geomorph.2020.107369.

Kocot, K. M., C. Todt, N. Mikkelsen, and K. M. Halanych. 2019. Phylogenomics of Aplacophora (Mollusca, Aculifera) and a solenogaster without a foot. Proceedings of the Royal Society B: Biological Sciences 286(1902):20190115.

Konrad, H., I. Sasgen, D. Pollard, and V. Klemann. 2015. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. Earth and Planetary Science Letters 432:254-264.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

Kuhl, T., C. Gibson, J. Johnson, G. Boeckmann, E. Moravec, and K. Slawny. 2020. Agile Sub-Ice Geological (ASIG) Drill development and Pirrit Hills field project. Annals of Glaciology 1-14. doi: 10.1017/aog.2020.59.

Larour, E., H. Seroussi, S. Adhikari, E. Ivins, L. Caron, M. Morlighem, and N. Schlegel. 2019. Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks. Science 364(6444):eaav7908. doi: 10.1126/science.aav7908.

Leidos Arctic Support Contract. 2018. Research Vessel Placement Program Vessel Studies Report.

Leventer, A., E. Domack, R. Dunbar, J. Pike, C. Stickley, E. Maddison, S. Brachfeld, P. Manely, and C. McClennen. 2006. Marine sediment record from the East Antarctic margin reveals dynamics of ice sheet recession. GSA Today 16(12):4. doi: 10.1130/GSAT01612A.1

Levy, R., D. Harwood, F. Florindo, F. Sangiorgi, R. Tripati, H. von Eynatten, E. Gasson, G. Kuhn, A. Tripati, R. DeConto, C. Fielding, B. Field, N. Golledge, R. McKay, T. Naish, M. Olney, D. Pollard, S. Schouten, F. Talarico, S. Warny, V. Willmott, G. Acton, K. Panter, T. Paulsen, M. Taviani, and SMS Science Team. 2016. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proceedings of the National Academy of Sciences of the United States of America 113(3):3453-3458. https://doi.org/10.1073/pnas.1516030113.

Levy, R. H., S. R. Meyers, T. R. Naish, N. R. Golledge, R. M. McKay, J. S. Crampton, R. M. DeConto, L. De Santis, F. Florindo, E. G. W. Gasson, D. M. Harwood, B. P. Luyendyk, R. D. Powell, C. Clowes, and D. K. Kulhanek. 2019. Antarctic icesheet sensitivity to obliquity forcing enhanced through ocean connections. Nature Geosciences 12:132-137. https://doi.org/10.1038/s41561-018-0284-4.

Li, X., E. Rignot, M. Morlighem, J. Mouginot, and B. Scheuchl. 2015. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophysical Research Letters 42:8049-8056.

Li, X., E. Rignot, J. Mouginot, and B. Scheuchl. 2016. Ice flow dynamics and mass loss of Totten Glacier, East Antarctica from 1989 to 2015. Geophysical Research Letters 43(12):6366-6373.

Lumpkin, R., and K. Speer. 2007. Global ocean meridional overturning. Journal of Physical Oceanography 37:2550-2563.

MacGregor, J. A., K. Matsuoka, M. R. Koutnik, E. D. Waddington, M. Studinger, and D. P. Winebrenner. 2009. Millennially averaged accumulation rates for the Vostok Subglacial Lake region inferred from deep internal layers. Annals of Glaciology 50(51):25-34.

Mackintosh, A. N., E. Verleyen, P. E. O’Brien, D. A. White, R. S. Jones, R. McKay, R. Dunbar, D. B. Gore, D. Fink, A. L. Post, H. Miura, A. Leventer, I. Goodwin, D. A. Hodgson, K. Lilly, X. Crosta, N. R. Golledge, B. Wagner, S. Berg, T. van Ommen, D. Zwartz, S. J. Roberts, W. Vyverman, and G. Masse. 2014. Retreat history of the East Antarctic Ice Sheet since the last glacial maximum. Quaternary Science Reviews 100:10-30.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

MacOr, L. 2021. Flood-Prone Miami to Spend Billions Tackling Sea Level Rise. Phys.org. https://phys.org/news/2021-02-flood-prone-miami-billions-tackling-sea.html.

Mayer, L., M. Jakobsson, G. Allen, B. Dorschel, R. Falconer, V. Ferrini, G. Lamarche, H. Snaith, and P. Weatherall. 2018. The Nippon Foundation—GEBCO Seabed 2030 Project: The quest to see the world’s oceans completely mapped by 2030. Geosciences 8:63.

McKay, R. M., T. R. Naish, R. Powell, P. Barrett, F. Talarico, P. Kyled, D. Moniene, G. Kuhne, C. Jackolskib, and T. Williams. 2012. Pleistocene variability of Antarctic Ice Sheet extent in the Ross Embayment. Quaternary Science Reviews 34:93-112. https://doi.org/10.1016/j.quascirev.2011.12.012.

McKay, R. M., L. De Santis, D. K. Kulhanek, and the Expedition 374 Scientists. 2019. Ross Sea West Antarctic Ice Sheet History. Proceedings of the International Ocean Discovery Program, Vol. 374. College Station, TX: International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.374.2019.

Medley, B., I. Joughin, B. E. Smith, S. B. Das, E. J. Steig, et al. 2014. Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. The Cryosphere 8(4):1375-1392. doi: 10.5194/tc-8-1375-2014.

Miles, B. W. J., J. R. Jordan, C. R. Stokes, S. S. R. Jamieson, G. H. Gudmundsson, and A. Jenkins. 2021. Recent acceleration of Denman Glacier (1972–2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration. The Cryosphere 15(2):663-676. https://doi.org/10.5194/tc-15-663-2021.

Milillo, P., E. Rignot, P. Rizzoli, B. Scheuchl, J. Mouginot, J. Bueso-Bello, and P. Prats-Iraola. 2019. Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica. Science Advances 5:eaau3433. https://doi.org/10.1126/sciadv.aau3433.

Mohajerani, Y., I. Velicogna, and E. Rignot. 2018. Mass loss of Totten and Moscow University glaciers, East Antarctica, using regionally-optimized GRACE mascons. Geophysical Research Letters 45(14):7010-7018.

Montelli, A., S. P. S. Gulick, R. Fernandez, B. C. Frederick, A. E. Shevenell, A. Leventer, and D. D. Blankenship. 2020. Seismic stratigraphy of the Sabrina Coast shelf, East Antarctica: Early history of dynamic meltwater-rich glaciations. GSA Bulletin 132(3-4):545-561. https://doi.org/10.1130/B35100.1.

Montgomery, J., A. J. Anderson, J. S. Avva, A. N. Bender, M. A. Dobbs, D. Dutcher, T. Elleflot, A. Foster, J. C. Groh, W. L. Holzapfel, D. Howe, N. Huang, A. E. Lowitz, G. I. Noble, Z. Pan, A. Rahlin, D. Riebel, G. Smecher, A. Suzuki, and N. Whitehorn. 2021. Performance and characterization of the SPT-3G digital frequency multiplexed readout system using an improved noise and crosstalk model. In Proceedings SPIE 11453: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X. Society of Photo-Optical Instrumentation Engineers. arXiv 2103.16017.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

Morlighem, M., E. J. Rignot, T. Binder, D. D. Blankenship, R. Drews, et al. 2020. Deep glacial troughs and stabilizing ridges hidden beneath the ice around the coast of Antarctica. Nature Geoscience 13:132-137.

Murray, A. E., and J. J. Grzymski. 2007. Diversity and genomics of Antarctic marine micro-organisms. Philosophical Transactions of the Royal Society B: Biological Sciences 362:2259-2271.

Muto, A., S. Anandakrishnan, R. Alley, H. Horgan, B. Parizek, S. Koellner, K. Christianson, and N. Holschuh. 2019. Relating bed character and subglacial morphology using seismic data from Thwaites Glacier, West Antarctica. Earth and Planetary Science Letters 507:199-206.

Naish, T., R. Powell, R. Levy, G. Wilson, R. Scherer, et al. 2009. Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations. Nature 458:322-328. https://doi.org/10.1038/nature07867.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2015. A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. https://doi.org/10.17226/21741.

NASEM. 2020. Progress Toward Implementation of the 2013 Decadal Survey for Solar and Space Physics: A Midterm Assessment. Washington, DC: The National Academies Press. https://doi.org/10.17226/25668.

Nield, G. A., V. R. Barletta, A. Bordoni, M. A. King, P. L. Whitehouse, P. J. Clarke, E. Domack, T. A. Scambos, and E. Berthier. 2014. Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading. Earth and Planetary Science Letters 397:32-41.

NRC (National Research Council). 2003. Frontiers in Polar Biology in the Genomic Era. Washington, DC: The National Academies Press. https://doi.org/10.17226/10623.

NRC. 2011a. Critical Infrastructure for Ocean Research and Societal Needs in 2030. Washington, DC: The National Academies Press. https://doi.org/10.17226/13081.

NRC. 2011b. Future Science Opportunities in Antarctica and the Southern Ocean. Washington, DC: The National Academies Press. https://doi.org/10.17226/13169.

NRC. 2012. Lessons and Legacies of International Polar Year 2007-2008. Washington, DC: The National Academies Press. https://doi.org/10.17226/13321.

NRC. 2013. Solar and Space Physics: A Science for a Technological Society. Washington, DC: The National Academies Press. https://doi.org/10.17226/13060.

NRC. 2015a. A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research. https://doi.org/10.17226/21741.

NRC. 2015b. Sea Change: 2015-2025 Decadal Survey of Ocean Sciences. Washington, DC: The National Academies Press. https://doi.org/10.17226/21655.

NSF (National Science Foundation). 2016. Antarctic Research Program Solicitation. NSF 16-541. https://www.nsf.gov/pubs/2016/nsf16541/nsf16541.htm.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

NSF. 2017. Program Solicitation NSF 17-505: The Future of Thwaites Glacier and Its Contribution to Sea-Level Rise. https://www.nsf.gov/pubs/2017/nsf17505/nsf17505.htm.

NSF. 2018a. Polar Code of Conduct. OPP-POL_6000.01. https://www.nsf.gov/geo/opp/documents/policy/polar_coc.pdf.

NSF. 2018b. US and UK Join Forces to Understand How Quickly a Massive Antarctic Glacier Could Collapse. News Release 18-0031. https://www.nsf.gov/news/news_summ.jsp?cntn_id=245261.

NSF. 2019. Major Facilities Guide. NSF 19-68. https://www.nsf.gov/pubs/2019/nsf19068/nsf19068.pdf.

NSF. 2020. The United States Antarctic Program—Affirmation of Non-Harassment Policy Statement. July 2020. https://www.nsf.gov/geo/opp/documents/policy/USAP%20Non-Harassment%20Policy%202020.pdf.

NSF OPP Advisory Committee (National Science Foundation Office of Polar Programs Advisory Committee). 2019. Report of the Ad Hoc Subcommittee on US Antarctic Program’s Research Vessel Procurement. Office of Polar Programs Advisory Committee. https://www.nsf.gov/geo/opp/opp_advisory/meeting_docs/may2019/RV%20Subcommittee%20final%20report%2014AUG2019.pdf.

P5 (Particle Physics Project Prioritization Panel). 2014. Building for Discovery: Strategic Plan for U.S. Particle Physics in the Global Context. https://www.usparticlephysics.org/wp-content/uploads/2018/03/FINAL_P5_Report_053014.pdf.

Pan, L., E. M. Powell, K. Latychev, J. X. Mitrovica, J. R. Creveling, N. Gomez, M. J. Hoggard, and P. U. Clark. 2021. Rapid postglacial rebound amplifies global sea level rise following West Antarctic Ice Sheet collapse. Science Advances 7(18):eabf7787.

Paolo, F. S., H. A. Fricker, and L. Padman. 2015. Volume loss from Antarctic ice shelves is accelerating. Science 348(6232):327-331. doi: 10.1126/science.aaa0940.

Patterson, M. O., R. McKay, T. Naish, C. Escutia, F. J. Jimenez-Espejo, M. E. Raymo, S. R. Meyers, L. Tauxe, H. Brinkhuis, A. Klaus, and IODP Expedition 318 Scientists. 2014. Orbital forcing of the East Antarctic ice sheet during the Pliocene and Early Pleistocene. Nature Geoscience 7:841-847.

Pattyn, F., and M. Morlighem. 2020. The uncertain future of the Antarctic ice sheet. Science 367(6484):1331-1335. doi: 10.1126/science.aaz5487.

Pilipenko, V. A., V. A. Martines‐Bedenko, S. Coyle, E. N. Fedorov, M. D. Hartinger, M. J. Engebretson, and T. R. Edwards. 2021. Conjugate properties of magnetospheric Pc5 waves: Antarctica‐Greenland comparison. Journal of Geophysical Research: Space Physics 126:e2020JA028048. https://doi.org/10.1029/2020JA028048.

Pollard, D., N. Gomez, and R. M. Deconto. 2017. Variations of the Antarctic ice sheet in a coupled ice sheet‐Earth‐sea level model: Sensitivity to viscoelastic Earth properties. Journal of Geophysical Research: Earth Surface 122(11):2124-2138.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

Pritchard, H., S. Ligtenberg, H. Fricker, D. G. Vaughan, M. R. van den Broeke, and L. Padman. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502-505. https://doi.org/10.1038/nature10968.

Rhie, A., S. A. McCarthy, O. Fedrigo, J. Damas, G. Formenti, et al. 2021. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592:737-746.

Ribal, A., and I. R. Young. 2019. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Scientific Data 6(7). https://doi.org/10.1038/s41597-019-0083-9.

Rignot, E., S. S. Jacobs, J. Mouginot, and B. Scheuchl. 2013. Ice-shelf melting around Antarctica. Science 341(6143):226-270.

Rignot, E., J. Mouginot, B. Scheuchl, M. van den Broeke, M. J. van Wessem, and M. Morlighem. 2019. Four decades of Antarctic ice sheet mass balance from 1979-2017. Proceedings of the National Academy of Sciences of the United States of America 116(4):1095-1103. doi: 10.1073/pnas.1812883116.

Rintoul, S. R., A. Silvano, B. Pena-Molino, E. van Wijk, M. A. Rosenberg, J. S. Greenbaum, and D. D. Blankenship. 2016. Ocean heat drives rapid basal melt of Totten Ice Shelf. Science Advances 2:e1601610.

Rintoul, S. R., S. L. Chown, R. M. DeConto, M. H. England, H. A. Fricker, V. Masson-Delmotte, T. R. Naish, M. J. Siegert, and J. C. Xavier. 2018. Choosing the future of Antarctica. Nature 558:233-241.

Roberts, G., Jr. 2020. Lead Lab Selected for Next-Generation Cosmic Microwave Background Experiment. Berkeley Lab News Center. September 9. https://newscenter.lbl.gov/2020/09/09/lead-lab-selected-for-next-generation.

Rosenheim, B. E., M. B. Day, E. Domack, H. Schrum, A. Benthien, and J. M. Hayes. 2008. Antarctic sediment chronology by programmed‐temperature pyrolysis: Methodology and data treatment. Geochemistry, Geophysics, Geosystems 9:Q04005. doi: 10.1029/2007GC001816.

Scambos, T. A., R. E. Bell, R. B. Alley, S. Anandakrishnan, D. H. Bromwich, et al. 2017. How much, how fast? A science review and outlook for research on the instability of Antarctica’s Thwaites Glacier in the 21st century. Global Planetary Change 153:16-34.

Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki. 2014. Multidecadal warming of Antarctic waters. Science 346:1227-1231.

Seroussi, H., Y. Nakayama, E. Larour, D. Menemenlis, M. Morlighem, E. Rignot, and A. Khazendar. 2017. Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophysical Research Letters 44(12):6191-6199.

Seroussi, H., S. Nowicki, A. J. Payne, H. Goelzer, W. H. Lipscomb, et al. 2020. ISMIP6 Antarctica: A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. The Cryosphere 14(9):3033-3070. doi: 10.5194/tc-14-3033-2020.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

Shackleton, S., D. Baggenstos, J. A. Menking, M. N. Dyonisius, B. Bereiter, T. K. Bauska, R. H. Rhodes, E. J. Brook, V. V. Petrenko, J. R. McConnell, T. Kellerhals, M. Häberli, J. Schmitt, H. Fischer, and J. P. Severinghaus. 2020. Global ocean heat content in the Last Interglacial. Nature Geoscience 13(1):77-81. doi: 10.1038/s41561-019-0498-0.

Shakun, J. D., L. B. Corbett, P. R. Bierman. K. Underwood, D. M. Rizzo, S. R. Zimmerman, M. W. Caffee, T. Naish, N. R. Golledge, and C. C. Hay. 2018. Minimal East Antarctic Ice Sheet retreat onto land during the past eight million years. Nature 558:284-287. https://doi.org/10.1038/s41586-018-0155-6.

Shevenell, A., A. Ingalls, E. Domack, and C. Kelly. 2011. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature 470:250-254. https://doi.org/10.1038/nature09751.

Silber, I., A. M. Fridlind, J. Verlinde, A. S. Ackerman, Y. S. Chen, D. H. Bromwich, S. H. Wang, M. Cadeddu, and E. W. Eloranta. 2019. Persistent supercooled drizzle at temperatures below −25°C observed at McMurdo Station, Antarctica. Journal of Geophysical Research: Atmospheres 124(20):10878-10895.

Silvano, A., S. R. Rintoul, and L. Herraiz-Borreguero. 2016. Ocean-ice shelf interaction in East Antarctica. Oceanography 29(4):130-143.

Silvano, A., S. R. Rintoul, B. Peña-Molino, and G. D. Williams. 2017. Distribution of water masses and meltwater on the continental shelf near the Totten and Moscow University ice shelves. Journal of Geophysical Research: Oceans 122:2050-2068. https://doi.org/10.1002/2016JC012115.

Silvano, A., S. R. Rintoul, K. Kusahara, B. Peña-Molino, E. van Wijk, D. E. Gwyther, and G. D. Williams. 2019. Seasonality of warm water intrusions onto the continental shelf near the Totten Glacier. Journal of Geophysical Research: Oceans 124:4272-4289.https://doi.org/10.1029/2018JC014634.

Smith, B., H. A. Fricker, A. S. Gardner, B. Medley, J. Nilsson, F. S. Paolo, N. Holschuh, S. Adusumilli, K. Brunt, B. Csatho, K. Harbeck, T. Markus, T. Neumann, M. R. Siegfried, and H. J. Zwally. 2020. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368(6496):1239-1242.

Smith, C. R., L. J. Grange, D. L. Honig, L. Naudts, B. Huber, L. Guidi, and E. Domack. 2012. A large population of king crabs in Palmer Deep on the West Antarctic Peninsula shelf and potential invasive impacts. Proceedings of the Royal Society B: Biological Sciences 279:1017-1026.

Smith, J. A., C.-D. Hillenbrand, G. Kuhn, J. P. Klages, A. G. C. Graham, R. D. Larter, W. Ehrmann, S. G. Moreton, S. Wiers, and T. Frederichs. 2014. New constraints on the timing of West Antarctic Ice Sheet retreat in the eastern Amundsen Sea since the Last Glacial Maximum. Global and Planetary Change 122:224-237. https://doi.org/10.1016/j.gloplacha.2014.07.015.

Somero, G. N. 2010. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine “winners” and “losers.” Journal of Experimental Biology 213(6):912-920. https://doi.org/10.1242/jeb.037473.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

Spector, P., J. Stone, D. Pollard, T. Hillebrand, C. Lewis, and J. Gombiner. 2018. West Antarctic sites for subglacial drilling to test for past ice-sheet collapse. The Cryosphere 12:2741-2757. https://doi.org/10.5194/tc-12-2741-2018.

Spector, P., J. Stone, and B. Goehring. 2019. Thickness of the divide and flank of the West Antarctic Ice Sheet through the last deglaciation. The Cryosphere 13:3061-3075. doi: 10.5194/tc-13-3061.

Spector, P., J. Stone, G. Balco, T. Hillebrand, M. Thompson, and T. Black. 2020. Miocene to Pleistocene glacial history of West Antarctica inferred from Nunatak geomorphology and cosmogenic-nuclide measurements on bedrock surfaces. American Journal of Science 320(8):637-676. doi: 10.2475/10.2020.0.

Spence, P., S. M. Griffies, M. H. England, A. M. C. Hogg, O. A. Saenko, and N. C. Jourdain. 2014. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophysical Research Letters 41:4601-4610.

Spence, P., R. M. Holmes, A. M. Hogg, S. M. Griffies, K. D. Stewart, and M. H. England. 2017. Localized rapid warming of West Antarctic subsurface waters by remote winds. Nature Climate Change 7:595-603. https://doi.org/10.1038/nclimate3335.

SPIDER Collaboration. 2021. A Constraint on Primordial B-Modes from the First Flight of the SPIDER Balloon-Borne Telescope. arXiv 2103.13334.

Steig, E. J., K. Huybers, H. A. Singh, N. J. Steiger, Q. Ding, D. M. W. Frierson, T. Popp, and J. W. C. White. 2015. Influence of West Antarctic ice sheet collapse on Antarctic surface climate. Geophysical Research Letters 42:4862-4868. https://doi.org/10.1002/2015GL063861,

Subt, C., K. A. Fangman, J. S. Wellner, and B. E. Rosenheim. 2016. Sediment chronology in Antarctic deglacial sediments: Reconciling organic carbon 14C ages to carbonate 14C ages using Ramped PyrOx. Holocene 26(2):265-273. https://doi.org/10.1177%2F0959683615608688.

Talley, L. D. 2013. Closure of the global overturning circulation through the Indian, Pacific and Southern oceans: Schematics and transports. Oceanography 26(1):80-97. https://doi.org/10.5670/oceanog.2013.07.

Thatje, S, C. D. Hillenbrand, A. Mackensen, and R. Larter. 2008. Life hung by a thread: Endurance of Antarctic fauna in glacial periods. Ecology 89:682-692.

Thompson, A. F., A. L. Stewart, P. Spence, and K. J. Heywood. 2018. The Antarctic Slope Current in a changing climate. Reviews of Geophysics 56:741-770. https://doi.org/10.1029/2018RG000624.

Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly. 2011. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience 4:741. https://doi.org/10.1038/ngeo1296.

Tinto, K. J., L. Padman, C. S. Siddoway, S. R. Springer, H. A. Fricker, I. Das, F. C. Tontini, D. F. Porter, N. P. Frearson, S. L. Howard, and M. R. Siegfried. 2019. Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nature Geoscience 12(6):441-449.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

UNOLS (University National Oceanographic Laboratory System Polar Research Vessel SMR Refresh Committee). 2018. Final Report—A New US Polar Research Vessel: Science Drivers and Vessel Requirements. https://www.unols.org/sites/default/files/PRV_SMR_FinalReport_Feb2012.pdf.

Venturelli, R. A., M. R. Siegfried, K. A. Roush, W. Li, J. Burnett, R. Zook, H. A. Fricker, J. C. Priscu, A. Leventer, and B. E. Rosenheim. 2020. Mid‐Holocene grounding line retreat and readvance at Whillans Ice Stream, West Antarctica. Geophysical Research Letters 47:e2020GL088476. https://doi.org/10.1029/2020GL088476.

Vick-Majors, T. J., J. C. Priscu, and L. A. Amaral-Zettler. 2014. Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. ISME Journal 8:778-789.

Wåhlin, A. K., A. G. C. Graham, K. A. Hogan, B. Y. Queste, L. Boehme, R. D. Larter, E. C. Pettit, J. Wellner, and K. J. Heywood. 2021. Pathways and modification of warm water flowing beneath Thwaites Ice Shelf, West Antarctica. Science Advances 7(15). doi: 10.1126/sciadv.abd7254.

WAIS (West Antarctic Ice Sheet) Divide Project Members. 2013. Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500(7463):440-444. doi: 10.1038/nature12376.

WAIS Divide Project Members. 2015. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520(7549):661-665. doi: 10.1038/nature14401.

Weber, M. E., M. E. Raymo, V. L. Peck, T. Williams, and the Expedition 382 Scientists. 2019. Expedition 382 Preliminary Report: Iceberg Alley and Subantarctic Ice and Ocean Dynamics. International Ocean Discovery Program. https://doi.org/10.14379/iodp.pr.382.2019.

Whitehouse, P. L. 2018. Glacial isostatic adjustment modelling: Historical perspectives, recent advances, and future directions. Earth Surface Dynamics 6(2):401-429.

Whitney, M. R., and C.A. Sidor. 2020. Evidence of torpor in the tusks of Lystrosaurus from the Early Triassic of Antarctica. Communications Biology 3(1):471.

Williams, T. J., E. Long, F. Evans, M. Z. DeMaere, F. M. Lauro, M. J. Raftery, H. Ducklow, J. J. Grzymski, A. E. Murray, and R. Cavicchioli, 2012. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME Journal 6(10):1883-1900.

Wilson, D. J., R. A. Bertram, E. F. Needham, T. van de Flierdt, K. J. Welsh, R. M. McKay, A. Mazumder, C. R. Riesselman, F. J. Jimenez-Espejo, and C. Escutia. 2018. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature 561:383-386. https://doi.org/10.1038/s41586-018-0501-8.

Xu, Z., M. D. Hartinger, D. R. Oliveira, S. R. Coyle, C. R. Clauer, D. Weimer, and T. Edwards. 2020. Interhemispheric asymmetries in the ground magnetic response to interplanetary shocks: The role of shock impact angle. Space Weather 18:e2019SW002427. https://doi.org/10.1029/2019SW002427.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

Young, D., A. P. Wright, J. L. Roberts, R. C. Warner, N.W. Young, J. S. Greenbaum, D. M. Schroeder, J. W. Holt, D. E. Sugden, D. D. Blankenship, T. D. van Ommen, and M. J. Siegert. 2011. A dynamic early East Antarctic ice sheet suggested by ice-covered fjord landscapes. Nature 474(7349):72-75.

Zaikova, E., D. S. Goerlitz, S. W. Tighe, N. Y. Wagner, Y. Bai, B. L. Hall, J. G. Bevilacqua, M. M. Weng, M. D. Samuels-Fair, and S. S. Johnson. 2019. Antarctic relic microbial mat community revealed by metagenomics and metatranscriptomics. Frontiers in Ecology and Evolution 7:1. https://www.frontiersin.org/article/10.3389/fevo.2019.00001.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×

This page intentionally left blank.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 111
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 112
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 113
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 114
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 115
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 116
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 117
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 118
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 119
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 120
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 121
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 122
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 123
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 124
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 125
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 126
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 127
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 128
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 129
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research. Washington, DC: The National Academies Press. doi: 10.17226/26338.
×
Page 130
Next: Appendix A: Biographical Sketches of Committee Members and Staff »
Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research Get This Book
×
 Mid-Term Assessment of Progress on the 2015 Strategic Vision for Antarctic and Southern Ocean Research
Buy Paperback | $48.00 Buy Ebook | $38.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The Antarctic's unique environment and position on the globe make it a prime location to gain insights into how Earth and the universe operate. This report assesses National Science Foundation (NSF) progress in addressing three priority research areas identified in a 2015 National Academies report: (1) understanding the linkages between ice sheets and sea-level rise, including both a focus on current rates of ice sheet change and studies of past major ice sheet retreat episodes; (2) understanding biological adaptations to the extreme and changing Antarctic environment; and (3) establishing a next-generation cosmic microwave background (CMB) program, partly located in Antarctica, to study the origins of the universe.

NSF has made important progress understanding the impacts of current ice sheet change, particularly through studies focused on the ice sheet and ocean interactions driving ongoing ice mass loss at the Thwaites Glacier and Amundsen Sea region in West Antarctica. Less progress has been made on studies of past major ice sheet retreat episodes. Progress is also strong on CMB research to understand the origins of the universe. Progress has lagged on understanding biological adaptations, in part because of limited community organization and collaboration toward the priority. To accelerate progress during the second half of the initiative, NSF could issue specific calls for proposals, develop strategies to foster collaborations and partnerships, and commission a transparent review of logistical capacity to help illuminate strategies and priorities for addressing resource constraints. Such efforts would also help optimize science and proposal development in an environment of inherently constrained logistics.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!