National Academies Press: OpenBook

Effects of Past Global Change on Life (1995)

Chapter: Evolutionary Turnover

« Previous: Extinction
Suggested Citation:"Evolutionary Turnover." National Research Council. 1995. Effects of Past Global Change on Life. Washington, DC: The National Academies Press. doi: 10.17226/4762.
×
Page 12

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

OVERVIEW AND RECOMMENDATIONS 12 often point to causes. In global mass extinctions such as the terminal Ordovician, Cenomanian-Turonian, and terminal Cretaceous events, tropical taxa, including reef communities, suffered preferentially. This is consistent with the idea that climatic cooling played a major role in extinction, but it may also reflect the typically narrow niche breadth of tropical taxa and the high degree of interdependence among species. High-resolution stratigraphic and paleoenvironmental studies are crucial for understanding mass extinctions. Such studies reveal that a major extinction in deep-sea benthic assemblages at the end of the Paleocene, the most profound of the last 90 m.y. for this habitat, resulted from rapid warming of the deep oceans in conjunction with global warming (see Kennett and Stott, Chapter 5). Extinctions that removed between 35 and 50% of deep-sea taxa occurred in less than 2000 years, equal to the time required for the deep water to circulate through its basins. For a few thousand years, ocean circulation underwent fundamental changes that affected the deep-sea biota. High-resolution study of this event has illustrated, first, how events that are geologically brief but not instantaneous can strongly alter the ecosystem and, second, how such changes can be largely decoupled from events in other segments of the biosphere. Patterns of extinction can point to particular causes of mass extinction. For example, the severe extinction of western Atlantic bivalve mollusks during the onset of the modern ice age seems to have eliminated all strictly tropical species of southern Florida; all survivors have broad thermal tolerances, ranging well beyond the tropics today. Here, a thermal filter seems clearly to have operated (see Stanley and Ruddiman, Chapter 7). Similarly, that climatic change was the ultimate cause of the previously discussed severe extinction of African mammals at the start of the modern ice age (-2.5 m.y. ago) is supported not only by the evidence that forest habitats shrank at this time but also by the fact that forest-adapted species were the primary victims (Vrba, 1985). Some patterns of extinction have characterized higher taxa in more than one mass extinction. A striking aspect of the terminal Cretaceous extinction of planktonic foraminifera was the disappearance of species with large, complex, highly ornamented skeletons (see Keller and Perch-Nielsen, Chapter 4). Survivors were inherently small species or species that became dwarfed during the crisis. Deep-water planktonic species also died out first and in the largest numbers. These patterns must be taken into account in any analysis of the proximate causes of extinction. Most species of planktonic foraminifera that became extinct during the Late Eocene to Early Oligocene extinction were also complex, highly ornamented species. These were also largely warm-adapted taxa, which is compatible with evidence that climatic changes were the primary cause of this global crisis. If there is one general pattern for extinctions, it is the rate of environmental change and not necessarily its magnitude that places most populations in jeopardy. This consideration is highly relevant to global changes predicted for the next century. If current models are correct, the magnitude of change will not be unusual on a geological time scale, but the rate of change may be. Evolutionary Turnover Evidence of causation also comes from the nature of species that immigrate into a region or originate within it during or soon after a pulse of extinction. In other words, the disappearance of some species and the appearance of others during a brief episode of evolutionary turnover should offer compatible testimony about environmental change. Thus, not only did forest- adapted species of antelopes preferentially die out in Africa about 2.5 m.y. ago, but newly appearing species were virtually all adapted to grassy habitats. Simultaneously, the apparently semiarboreal gracile australopithecines gave way to early Homo, which had helpless infants and could not have climbed trees habitually for refuge (see Stanley, Chapter 14).

Next: Delayed Recovery »
Effects of Past Global Change on Life Get This Book
×
Buy Hardback | $65.00 Buy Ebook | $49.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

What can we expect as global change progresses? Will there be thresholds that trigger sudden shifts in environmental conditions—or that cause catastrophic destruction of life?

Effects of Past Global Change on Life explores what earth scientists are learning about the impact of large-scale environmental changes on ancient life—and how these findings may help us resolve today's environmental controversies.

Leading authorities discuss historical climate trends and what can be learned from the mass extinctions and other critical periods about the rise and fall of plant and animal species in response to global change. The volume develops a picture of how environmental change has closed some evolutionary doors while opening others—including profound effects on the early members of the human family.

An expert panel offers specific recommendations on expanding research and improving investigative tools—and targets historical periods and geological and biological patterns with the most promise of shedding light on future developments.

This readable and informative book will be of special interest to professionals in the earth sciences and the environmental community as well as concerned policymakers.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!