National Academies Press: OpenBook
« Previous: Genome Structure and Evolution in Drosophila: Applications of the Framework P1 Map
Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×

INDEX

A

Acanthomorphs, 73

Acritarchs

   across Varanger ice age, 73, 74, 75-76

   cladogenetic evolution, 75, 78-79

   cohort survivorship in Proterozoic, 76

   diversity peaks, 77-78, 79

   fossil record, 69-73

   morphological diversification, 73

   Precambrian evolution, 67-69

   Proterozoic-Cambrian evolution, 74-80

Adaptive landscape

   analysis of walks in, 158-164

   depth of valley in, 28

   E. coli, 262-264, 267-268

   as metaphor, 145-147, 261-262

   morphospace in, 149

   phenotype fitness, modeling of, 153-154

   in phenotypic transformation, 146-147

   plant model, 147-154

   point of origin for walks in, 154

   quantitative analysis in, 145-146

   single vs. multi-task walks, 155-158

   task demands in, 146-147

   unimpeded walks in, 147-149

Adenosine triphosphatase, archaebacterial subunits, 13, 19

African replacement model, 203, 205

Amino acids

   covarion model of replacement, 235-236

   in major histocompatibility complex, 189

   replacement in RuBisCo protein, 223-227

   replacement in SOD, 235

   replacement patterns, 213, 230

   in replication in RNA world, 1, 35, 36, 37

   in SOD molecular clock, 244, 246-247

   See also Superoxide dismutase

Amphibians, in Cretaceous-Tertiary mass extinction, 118-119

Amylase, in Drosophila pseudoobscura, 289, 290-291

Annelids

   late Precambrian form, 103

Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×

   phylogenic lineage, 97-98

Anticodon, origins, 26, 37

Archaea, 15-16

Archaebacteria

   characteristics, 11-12

   classification, 11, 21-22

   in eubacteria-eukaryotic-prokaryotic lineage, 4, 12-16

   genome sequence, 18, 21

   ribozymology, 4-5

   RNA polymerase subunits, 20

Arthropods

   late Precambrian form, 102-103

   phylogenetic lineage, 95, 96-97

Asexual reproduction, 53

Atmospheric conditions

   in Cambrian explosion, 102

   primordial cyanobacteria, 55-56

B

Background selection, 276, 277-282

Bacteria

   chloroplast-mitochondria lineage in, 9

   as prokaryotes, 6

   reproductive rate, 251

   See also E. coli

Bacteriophages

   P1. See Framework P1 map

   Qß, replication strategy, 28-29, 30, 33-34

Balanced selection, 196-197, 199

Bilaterians

   body plan evolution, 101

   Vendian, 95, 97, 98-99

Biometrical science, iv

Bipedalism, 173-175

Bottleneck effect, 188-189, 197-201, 206

   in human evolution, 203, 204

Brachiopods, 98

Bradytelic evolution, 43

   Simpson on, 53, 131-132

Brome mosaic virus, 29

Burgess Shale

   cnidarians in, 90

   middle Cambrian diversity in, 91

C

Cambrian Period, 85

   acritarch evolution, 69-80

   annelids, 97-98

   boundaries of explosion, 88-89, 91

   environmental factors in explosion, 102

   gene expression in explosion, 103

   metazoan body plans, 87, 93

   metazoan diversity before explosion, 85, 99

   metazoan faunas, 89-91

   skeletal fossils, 90-91

Candelabra model, 202-203

Cauliflower mosaic virus, 33

CCA terminus, 3, 28, 31, 35-37

Cell-type number, 92-93

Cenancestor

   definition, 6

   in eukaryote-prokaryote lineage, 10-11

   genome structure, 18

   Iwabe rooting, 13-15, 16-20

   macromolecular synthesis in, 25-26

   obstacles to understanding, 20-22

Cephalopods, body plan, 98

Chance events, 251, 267-268

Chloroplast

   amino acid replacement in, 223-227

   codon use, 220, 229

   complexity of genome evolution in, 229-231

   eukaryote-prokaryote lineage, 7, 9, 21

   in eukaryotic cell, 215

   genome conservation, 216-217

   genome structure, 213, 215, 216

   genomic deletion events, 217-219

   intron evolution, patterns of, 228-229

   mutation patterns, 217-220

   noncoding DNA in, 217-220, 229

   nucleotide substitution rate, 221-223

   protein coding genes in, 220-223

   pseudogenes, 217

   research role, 230

Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×

Chromosomes

   Drosophila polymorphism, 251-252, 283

   Drosophila polytene, 299-300, 307, 310

   mapping, 252

   telomerase, 34

Chroococcaceans

   fossil-modern comparisons, 49-50, 52

   ranges of growth/survivability, 53-55

Classification systems

   cenancestor in, obstacles to, 20-22

   cyanobacteria, 44, 49

   domains in, 14-15, 16

   prokaryote-eukaryote-archaebacteria, 6-7, 11, 14-16

Cnidarians, 89-90

Coalescence theory, 196-197, 206

Codons

   in chloroplast, 220, 229

   concomitantly variable. See Covarions

   in molecular clock, 243-244

Color vision, 205-206

Comparative sequence analysis, 230, 231

Competition, as extinction factor, 111-112, 117-118

Complexity

   body plan, cell-type number and, 92-93

   Cambrian metazoa, 92

   forcing mechanisms in, 92, 93

   morphological diversity and, 86

   Precambrian worms, 99

Covarions

   in molecular clockwork, 243, 246, 248

   in SOD simulation, 236-237, 240, 243

   theory of, 235-236

Cretaceous-Tertiary mass extinction, 110, 114-115, 118-119, 121

Cyanobacteria, 9

   classification, 6

   ecological distribution, 53

   hypobradytelic evolution in, 47-53, 57

   living vs. fossil morphology, 44, 47-50, 48, 57

   paleoenvironment, 50-52

   Precambrian evolution, 42, 57-58

   Precambrian fossil record, 43, 44-46

   ranges of growth/survivability, 53-56

   reproduction, 53

   specialization and survivability, 53, 56

   tempo of evolution, 43-44

Cytoskeletal proteins, 16

D

Darwin, Charles, iii-iv, 125

   on extinction, 109-111, 117-118, 137

   Lyell and, 126

   uniformitarianism in thought of, 126-127, 137

Deuterostomes, 95, 96

Dinosaurs

   fossil record, 113

   species susceptibility in extinction, 120

   taxonomic selectivity in extinction of, 118

Diplomonads, 19

Discontinuous variation, iv

Diversity peaks

   acritarch, 74-76, 77-79

   Cambrian explosion, 85, 87-91, 93, 99, 102-103

   Middle Cambrian body plans, 91

   Proterozoic protistans, 77-78, 79, 80

DNA

   Drosophila, extraction and sequencing of, 289-290

   Drosophila polymorphism, patterns of, 251, 283

   in Drosophila polytene, 300

Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×

   evolutionary complexity in chloroplast genome, 229

   evolutionary data in, 188

   human mitochondrial evolution, 203-204, 206

   mitochondrial polymorphism, 189

   non-primer synthesis, 33

   noncoding, in chloroplast genome, 217-220, 229

   RNA ancestry in, 4-6

   selective sweeps effects, 277

   sequence data base, 275

   tRNA in replication of, 31-33

Dobzhansky, Theodosius, 252, 287-288

Domains, classification of, 14-15, 16

Drosophila

   amylase in, 290-291

   ancestor chromosomes, 252

   ancestor gene in pseudoobscura, 288-297, 310-311

   chromosome mapping, 252

   chromosome polymorphism, patterns in, 251

   cytogenetic phylogeny, 288

   early chromosomal studies, 287-288

   extraction and sequencing of genomic DNA, 289-290

   mutation rate, 280-282

   polytene chromosome, 299-300, 307, 310

   recombination-polymorphism correlation, 276, 282-283

   reproductive rate, 251

   research advantages, 299-300

   restriction site polymorphism, 289, 292-294

   virilis, 311

   yeast artificial chromosome map, 300

   See also Framework P1 map

Duration of species, 195-196

E

E. coli, 11, 18

   adaptive landscape, 262-264, 267-268

   assessment of mean fitness in, 255, 259-260

   cell size evolution, 256-259

   chance events in experimental evolution, 267

   environmental factors in, 268

   evolutionary stasis in experimental populations, 268-269

   experimental evolutionary method, 255-256

   fitness evolution in experimental population, 260-261

   in Framework P1 map, 301-302

   limitations of experimental evolution, 270

   measurement of cell size, 255, 256, 264

   natural selection in experimental population, 256, 257, 259, 264-266

   outcomes of experimental evolution, 271

   parallel evolution in experimental populations, 266-268

   punctuated equilibrium in experimental evolution, 269

   reproductive rate, 251

   size-fitness relationship, 264-266

Elongation factors

   precenancestral, 13, 19-20

   in Qß RNA genome replication, 30

   Tu, RNase P and, 29

Endosymbiont hypothesis, 7, 9, 21

Entophysalidaceae, 50, 52

Environmental factors

   in acritarch evolutionary tempo, 79

   in Cambrian explosion, 79, 102

   cyanobacterial growth tolerances, 53-56

   in E. coli experimental evolution, 268

   in extinction, 119, 121, 122

   in morphological research, 254-255

   in prokaryotic evolution, 42

Eosynechococcus moorei, 47

Epling, Carl, 252, 287-288

Eubacteria, 4, 11

   archaebacteria linkage, 14, 20

Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×

   genome sequencing, 21

   operans in, 18

   origins of, 13-14

Eukaryotes

   ancestral ribosome, 9

   chloroplast genome, 215

   endosymbiont hypothesis, 7, 9, 21

   as Eucarya, 15

   evolution of, 4-6

   evolutionary model, 7-12

   evolutionary pathway, 12-16

   fossil record, 7

   introns, 78

   nuclear genome evolution, 18-19

   nuclear lineage, 9, 11

   Precambrian acritarchs, 67-73

   prokaryotes vs., 6-7

   Proterozoic algae, 78

   rate of evolution, 2

   RNA polymerase subunits, 20

   rRNA sequencing, 8-9, 11

   tRNA production, 30

Evolutionary theory

   bipartite model, 56-57

   cellular information systems in, 4-6

   eukaryotes-prokaryote lineage, 7-12

   eukaryotes-prokaryote split, 12-16

   genomic diversity of viruses, 30-31

   historical development, iii-vi

   human origins, 201-205

   intron theory, 11, 78

   Modern Synthetic, 129

   molecular research in, 22

   paleontology and, 127-131

   precellular evidence, 27

   RNA in, 25-26

   significance of extinction, 85-86, 109, 122-123

   See also Darwin, Charles

   See also Macroevolutionary theory

Exon theory, 11

Extinction

   aftermath, 117, 122

   body size and, 119

   Cretaceous-Tertiary event, 110, 114-115, 118-119, 121

   Darwin on, 109-111, 117-118, 137

   environmental factors in, 121, 122

   episode analysis, 114-117

   evolutionary significance, 85-86, 109, 122-123

   fossil record, 110, 112-113

   geographic distribution and, 119

   interspecies competition in, 111-112, 117-118

   kill curve, 115-117

   mass episodes, 110, 112, 114-115, 117, 123, 137

   natural selection and, 120

   role of, 121-122

   selectivity mechanisms in, 117-120, 123

   Simpson on, 111-112

   species susceptibility, 119-120

   taxonomic susceptibility, 118-119

   trait susceptibility, 119

F

Fitness as evolutionary factor

   E. coli cell size and, 264-266

   E. coli evolutionary trajectory, 260-264

   measuring, in E. coli, 255-256, 259-260

   modeling evolutionary morphology of vascular land plants, 149-154, 158-164

   modeling of task demands for plants, 155-158

   modeling requirements, 147-149

   in morphological transformation, 146-147

   obstacles to analysis, 145-146

   phenotypic maxima vs. phenotypic optima, 157-158

   plants as object of study, 147

   task demands and, 146

Fossil record

   acritarchs, Proterozoic-Cambrian, 69-73

   annelid, 97-98

   brachiopod, 98

Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×

   correspondence of computer simulations, 160-162

   cyanobacterial hypobradytely, 47-53

   discontinuities in, v

   earliest metazoan, 89-90

   earliest skeletal, 90-91

   Early Cambrian, 87

   eukaryote, 7

   extinctions in, 110, 112-113

   H. erectus, 202

   hominid, 169, 173-175, 202, 203

   hypobradytelic evolution, 44-46

   marine animal survivorship analysis, 113

   molecular fossils, 27, 43, 44-46

   in morphological research, 254-255

   Paleoproterozoic, 2

   pre-cellular, 1

   Precambrian, 1-2, 43, 44-46

   prokaryote, 7

   Proterozoic-Cambrian, 64-73

   Simpson's use of, 41

   tracheophytes, 154, 160-162

Founder effect theory, 188-189, 197-201, 206

Framework P1 map

   cloning vectors, 301-302

   contig assembly, 306-307

   cytological analysis, 302, 307

   D. virilis in, 311

   depth of coverage, 300

   distribution of clones, 304-305

   Drosophila library, 303-304

   Drosophila strains, 300-301

   dual hybridizations, 304

   electronic mail access, 300

   in evolution studies, 307-311, 312

   insert sizes, 300

   ligated DNA packaging, 301-302

   PCR amplification of insert-vector junctions, 302-303

   PCR screening, 303

   plasmid DNA extraction, 302

   results, 303-307, 311-312

   STS markers, 299, 303, 306-307

   X chromosome, 305

G

Genetic information transfer

   allele selectivity, 195

   archaebacterial, 14

   in Cambrian explosion, 103

   cellular evolution, 4, 9-10

   chloroplast rp123 pseudogene, 217-219

   chloroplast to eukaryotic nuclear genome, 215-216

   coalescence theory, 196-197

   human polymorphisms, population size in, 197-201

   lateral events, 21

   metazoan body plan evolution, 99-101

   molecular clocks, 240-243

   in multiregional model of human evolution, 205-206

   in natural selection, 140-141

   recombination-polymorphism correlation, 276-283

   trans-specific polymorphisms, 191-196

Genetic science

   comparative sequence analysis in, 230, 231

   in evolutionary theory, iii-iv

   in phylogenetic reconstruction, 252

   population processes in, 275-276

   role of phylogeny research in, 216

   in species research, 187-188

Genotype

   mapping, 145-146

   phenotype linkage, 4, 6, 10

Geographic distribution

   cyanobacteria, 53, 56

   extinction and, 119

   in human origins, 202-207

Gloethece coerulea, 47

Haloferax volcanii, 18

H

Halophiles, 11

   genome structure, 18

Hedgehog gene, 100-101

Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×

Hitchhiking effects, 276, 277, 282-283

Homeobox genes, 100, 101

Horotelic evolution, 43, 131, 132

Hox/HOM genes, 100, 101

Human evolution

   allele phylogeny in, 191-193

   ancestral population size, 197-201

   ancestral species overlap, 181

   bipedalism, 173-175, 182

   body size, 175-177

   brain size, 178-181, 182

   color vision in, 205-206

   cranial, 170-173, 182

   dentition, 170, 177-178, 182

   DRB1 gene, 193

   food consumption, 177-178

   gene coalescence in, 196-197, 203-204, 206

   geographic models, 202-206

   hand structure, 175

   histocompatibility complex allele complexity, 167

   lipid metabolism in, 206

   morphological course, 167, 182

   most primitive hominid, 170, 173, 177

   multiregional model, 204-206

   phylogeny, 169-173

   population bottlenecks in, 188-189, 197-201, 206

   research trends, 167-168, 169

   single ancestor theory, 189, 203

   theory of origins, 201-205

   trans-specific polymorphism in speciation, 193-196

   within-species variation, 182

Human Genome Project, 299

Human leukocyte antigen complex. See Major histocompatibility complex

Hypobradytelic evolution

   in cyanobacteria, 43-44, 46-56

   fossil evidence, 44-46

I

Immune system, major histocompatibility complex in, 189

in situ hybridization, in chromosome mapping, 300

Introns, 11, 78

   evolutionary patterns in chloroplast genome, 228-229

L

Light conditions, for early cyanobacteria, 55

Lipid metabolism, 206

Lobopods, 97

Lyell, Charles, 126

Lyngbya, 47, 48

M

Macroevolutionary theory, 85-86

   causality in, 136

   experimental E. coli evolution and, 270-271

   hierarchical selection theory in, 137-142

   mass extinction in, 137

   punctuated equilibrium in, 136-137

   Simpson and, 132-136

Macromolecules

   evolutionary pathways of synthesis, 25

   social coevolution, 27-28

Major histocompatibility complex

   action of, 189

   allelic diversity, 189-191

   allelic phylogeny, 196-197

   DRB1 gene, 191-193, 196-197, 206

   maintenance of polymorphisms, population size in, 197, 201, 206-207

   role of, 189, 206

   trans-specific polymorphisms, 191-193

Mapping, genomic, 145-146

   Drosophila, 252, 299, 300

   framework map, definition of, 300

   human, 299

   hybridization technique in, 300

   overlap detection in, 299, 300

Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×

   role of, 299

   yeast artificial chromosome map, 300

   See also Framework P1 map

Mauriceville plasmid, 31-34

Messenger RNA, 1, 26

Metazoans

   body-plan complexity, 91-93

   Cambrian faunas, 90-91

   Cambrian/Precambrian body plans, 87

   earliest fossils, 89-90

   genetic regulation in body plan evolution, 99-102

   Hox/HOM genes in, 100

   late Precambrian body plans, 95-99

   Precambrian diversity, 99

   Precambrian phylogeny, 95, 102-103

Methanogens, 11

Microsporidia, 19

Mitochondria

   eukaryote-prokaryote lineage, 7, 9, 21

   human evolution, 203-204, 206

   Mauriceville plasmid of Neurospora, 31-33

Mode of evolution

   corresponding tempos, 132

   definition, 3

   in molecular research, 3

   paleontological research, 130-131

   quantum, 134

Molecular fossils, 27, 43, 44-46

Mollusks, 98

   extinction record, 119

N

Natural selection. See Selection

Neurospora, Mauriceville plasmid, 31-33

Noah's Ark model, 203

Nucleotide substitution

   in chloroplast genome, 221-223

   as molecular clock, 242-243

   recombination rate and, 278-279

O

Operons, in archaebacterial/eubacterial lineage, 18-19

Oscillatoriaceans

   fossil-modern comparisons, 49-50, 52

   ranges of growth/survivability, 53-55

Paleolyngbya, 47, 48

P

Paleontology

   in evolutionary science, 129-131, 142-143

   phyletic data in, 133

   professional status, 127-129

Paleoproterozoic, 2

Paleozoic era, time scale, 64

Paralogy, 20-21

Phanerozoic eon

   evolution in, 41, 56-57, 58

   rate of evolution, 52-53

   worms, 99

Phenotype

   cell-type number in body plan complexity, 92-93

   genotype mapping, 145-146

   identifying trends in, 254

   modeling fitness transformations, 147-149, 160

Photosynthesis, 216

   endosymbiont hypothesis, 7

Phycodes pedum, 88

Phycomata, 67-68

Phylogeny

   algal eukaryotes, 78

   alleles in reconstruction of, 191

   amino acid replacement, 224, 226, 230

   archaebacteria-eukaryote-prokaryote, 6-20

   chloroplast genome, 229-230

   Drosophila pseudoobscura ancestor gene, 288-297

   eukaryote, 26

Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×

   experimental reconstruction in bacteria, 255-256

   genetics in reconstruction of, 252

   hominid cladogram, 169-173

   metazoan body plans, 93-99

   Precambrian branching sequences, 93-95

   precenancestral, reconstruction of, 20-22

   prokaryote, 6-20

   reconstruction process, 292

   research role, 216

   Simpson's emphasis on, 133-134

   SOD amino acids, 237

   tRNA evolution, 26, 34-38

Plants

   chloroplast genome, 213, 215, 216

   intron evolution, 228-229

   modeling evolutionary morphology of, 149-154, 158-164

   modeling of task demands, 155-158

   tracheophyte evolution, 149, 154, 160-162

Pleistocene epoch

   extinction in, 121

   human population growth in, 198

Pleurocapsaceans, 51-52

Polymerase chain reaction, 302-303

Polymerases, domain structure, 33-34

Population size

   cyanobacteria, 53

   in fixation of neutral allele, 195

   in founder effect theory of speciation, 188

   in human evolution, 197-201, 203-207

   in maintenance of polymorphism, 197

Postmodern thought, 135-136, 143

Precambrian era

   arthropod evolution, 95, 96-97

   clade diversity, 69

   cyanobacterial hypobradytely in, 47-53, 57-58

   evolution in, 57-58

   life of, 41-42

   metazoan body plans, 95-99

   molecular fossil record, 43, 44-46

   phylogenetic models, 93-95

   prokaryote evolution, 41-42

   vascularized worms, 95-96, 98-99, 102-103

   Vendian fauna, 89-90, 95-96, 97

Progenote, 1

   as cenancestor, 10, 22

   definition, 6

   ribosomal structure, 9-10

   templated protein synthesis in, 26

Prokaryotes

   distinguishing features, 6-7

   eukaryotes vs., 6-7

   evolutionary forces, 41-42

   evolutionary model, 7-12

   evolutionary pathway, 12-16

   fossil record, 7

   introns in, 11

   Precambrian, 41-43

   rate of evolution, 1-2

   rRNA sequencing, 8-9, 11

Protein coding genes, 220-223

Proteobacteria, 9

Proterozoic eon

   acritarch evolution in, 73-80

   clade diversity in, 69

   eukaryotes in, 72

   paleontological data base, 69-72

   time scale, 64-66

Protistan

   Paleoproterozoic evolution, 2

   Proterozoic diversity peaks, 77-78, 79, 80

Protostomes, phylogenetic lineage, 95, 96

Punctuated equilibrium, 136-137, 269

R

rDNA, 9

Recombination rate, correlation with polymorphism, 276-283

Reef communities, 117

Replication

   earliest RNA genomes, 28-29

Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×

   Mauriceville plasmid of Neurospora, 31-33

   as selectivity criteria, 140-141

   transitional genomes in, 31-33

   tRNA origins in, 26, 37-38

Reproduction

   asexual, 53

   evolutionary dynamics, 253

   rate of, 251

   tracheophyte model, 152-153

Restriction site polymorphism, 289, 292-294

Retroviruses, replication strategy, 31, 33

Ribonucleotide reduction, in RNA-DNA ancestors, 4-5

Ribosomal RNA

   arthropod, 96

   eukaryote-prokaryote lineage, 8-10, 11

   as molecular chronometer, 22

RNA

   3' terminal sequence, 28-30

   archaebacterial/eukaryotic linkage, 20

   earliest genomic tags, 28-29

   evolutionary role, 25-26

   introns early hypothesis, 11

   messenger, 1, 26

   origins of, 26

   See also Transfer RNA

RNase P, 29, 37

RuBisCo protein, 223-224, 226

S

Seaweeds, pre-Ediacaran, 68

Segment-polarity genes, 100-101

Selection, iv

   in adaptive landscape, 145-147, 261-262

   of alleles, 195

   in amino acid replacement, 230

   background selection model, 277-282

   balanced, 196-197, 199

   in chloroplast codon use, 220

   codical domain in, 140-142

   in E. coli cell size, 257, 259, 264-266

   emergent fitness hypothesis in, 140

   emergent trait hypothesis in, 139-140

   in experimental E. coli populations, 256

   extinction and, 86, 110-111, 117-120, 120, 123

   hierarchical theory, 137-142

   macroevolutionary theory, 86

   in species extinction, 86, 119-120

   in stasis of E. coli experimental populations, 268-269

Simpson, George Gaylord, iii-iv, v-vi, 3, 41, 287-288

   on bradytelic evolution, 53

   contributions of, 129-132

   evolutionary rate classification, 43

   on extinction, 111-112

   on human evolution, 167

   macroevolutionary theory and, 132-136, 142-143

Skeletal fossils, 90-91

   hominid evolution, 173-181

SOD. See Superoxide dismutase

Sonic hedgehog gene, 100-101

Specialization

   in cyanobacterial evolution, 53-56

   in Precambrian microbes, 41-42

   rate of evolution and, 53

Speciation

   definition, 187

   founder effect theories, 188-189, 197-201, 206

   gene polymorphism in, 193-196

   as mode of evolution, 131

   obstacles to research, 187-188

   Simpson on, 133

Species

   definition, 187

   duration, 195-196

   as paleontological unit of study, 69

   in selective extinction, 119-120

   trans-specific polymorphisms in, 191-193

Sulfolubus, 18

Superoxide dismutase

   action of, 237

   amino acid replacement in, 235

   covarions in, 236-237, 240, 243, 248

Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×

   as molecular clock, 213-214, 243-248

   phylogeny, 237

   sequence analysis, 236-237

   structure, 237

T

Tachytelic evolution, 43, 131, 132

Taq DNA polymerase, 30

Telomerase, tRNA, 28, 30, 34-35, 37

Templated protein synthesis

   origins of tRNA replication before, 26, 28

   in progenote, 26

Tempo and Mode in Evolution, iii, v, 3, 41, 111-112

   human evolution in, 167

   significance of, 129-132

   theory in, 132-134

Tempo of evolution

   amino acid replacement in SOD, 235-236

   bradytelic, 43, 131-132

   chloroplast genome, 229-231

   chloroplast introns, 228-229

   constancy model, 213-214

   corresponding modes, 132

   cyanobacterial hypobradytely, 47-53

   definition, 3

   in detecting trans-specific polymorphisms, 192-193

   determinants of, v

   in experimental E. coli population, 266-269, 271

   hitchhiking hypothesis, 277

   horotelic, 43, 131, 132

   hypobradytelic, 43-44

   introns in acceleration of, 78

   in molecular research, 3

   nucleotide substitution in chloroplast genome, 221-223

   Paleoproterozoic, 2

   Phanerozoic, 52

   Precambrian, 41, 53

   Proterozoic-Cambrian acritarchs, 74-76, 78-80

   Proterozoic-Cambrian database, 67-69

   role of paleontology in, 130-131

   Simpson's model, v-vi, 131-132

   specialization and, 53

   tachytelic, 43, 131, 132

Tetrahymena, 34

Thermophiles, 12

   ranges of growth, 55

   tryptophan operans in, 18

Trace fossils

   early Cambrian, 91

   Vendian, 90, 95-96

Transcription, tRNA, 29

Transfer RNA

   5' processing, 29-30

   earliest genomic tags, 28-29

   evolutionary phylogeny, 26, 34-38

   nucleotidyltransferase, 28, 29, 30

   in replication, 31-33

   as replication primer, 33-34

   telomerase, 28, 30, 34-35, 37

   top half, 29, 35-36, 38

Triassic coal gap, 117

tRNA. See Transfer RNA

Tryptophan operans, 18

Turnip yellow mosaic virus, 29, 31, 33

U

Ultraviolet light, 55

Uniformitarianism, 126-127, 137, 229

V

Varanger ice age, acritarch evolution across, 72, 73, 74, 75-76

Vendian fauna, 89-90, 95-96, 101

   segmented bilaterians, 97, 98-99

Viruses

   genomic diversity, 30-31

   replication strategies, 31-34

W

Worms

   late Precambrian, 95-96, 98-99

   in metazoan evolutionary phylogeny, 102

Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×
Page 315
Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×
Page 316
Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×
Page 317
Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×
Page 318
Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×
Page 319
Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×
Page 320
Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×
Page 321
Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×
Page 322
Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×
Page 323
Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×
Page 324
Suggested Citation:"Index." National Academy of Sciences. 1995. Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson. Washington, DC: The National Academies Press. doi: 10.17226/4910.
×
Page 325
Tempo and Mode in Evolution: Genetics and Paleontology 50 Years After Simpson Get This Book
×
Buy Hardback | $75.00 Buy Ebook | $59.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Since George Gaylord Simpson published Tempo and Mode in Evolution in 1944, discoveries in paleontology and genetics have abounded. This volume brings together the findings and insights of today's leading experts in the study of evolution, including Ayala, W. Ford Doolittle, and Stephen Jay Gould.

The volume examines early cellular evolution, explores changes in the tempo of evolution between the Precambrian and Phanerozoic periods, and reconstructs the Cambrian evolutionary burst. Long-neglected despite Darwin's interest in it, species extinction is discussed in detail.

Although the absence of data kept Simpson from exploring human evolution in his book, the current volume covers morphological and genetic changes in human populations, contradicting the popular claim that all modern humans descend from a single woman.

This book discusses the role of molecular clocks, the results of evolution in 12 populations of Escherichia coli propagated for 10,000 generations, a physical map of Drosophila chromosomes, and evidence for "hitchhiking" by mutations.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!