National Academies Press: OpenBook

Plasma Science: From Fundamental Research to Technological Applications (1995)

Chapter: Nonlinear Laser-Plasma Interaction

« Previous: Gyrokinetics
Suggested Citation:"Nonlinear Laser-Plasma Interaction." National Research Council. 1995. Plasma Science: From Fundamental Research to Technological Applications. Washington, DC: The National Academies Press. doi: 10.17226/4936.
×
Page 161

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

THEORETICAL AND COMPUTATIONAL PLASMA PHYSICS 161 Large-Orbit Effects on Plasma Stability The influence of large-orbit particles in a plasma on low-frequency stability was computed by the Vlasov formalism in the form of a modified energy principle. The observed stability of field-reversed configurations has been attributed to this effect. A formal theory of interaction of a dilute species of energetic particles (described by the Vlasov equation) with magnetohydrodynamic Alfvén waves (described by fluid equations) has been developed and applied, with quantitative success, to tokamak plasmas and to the magnetosphere. The complex geometry of tokamaks, which is periodic the short-way-around the doughnut, altered the Alfvén wave propagation and attenuation bands as periodic media generally do. Almost-undamped Alfvén wave modes emerged that could be destabilized by energetic particles with velocities comparable to the Alfvén speed. This development forms the basis on which to expect challenging physics when thermonuclear reactions take place in magnetically confined plasmas. Three-Dimensional Magnetohydrodynamics Three-dimensional resistive magnetohydrodynamic simulations have successfully modeled turbulent generation of toroidal flux in force-free reversed- field pinch experiments. Three-dimensional resistive magnetohydrodynamics further gives a good account of magnetic reconnection in tokamaks and associated magnetic oscillations, including spontaneous formation of singular current sheets. However, a few troubling enigmas remain to be explored. Numerical Simulation of Plasma Processes The numerical study of plasmas has advanced markedly during the past decade, with applications to the ionosphere, the magnetosphere, solar flares, solar pulsations, stellar convection, nonlinear magnetohydrodynamics, gyrokinetics, and so on. (See Plate 8.) The progress has been due to a combination of improvements in algorithms and the advent of cheaper more powerful computers, both supercomputers and workstations, that provide great power, rapid turnaround, and networking at very modest cost. The computational discovery of nonlinear coherences that compensate for linear damping of microinstability modes in tokamaks calls into question the use of quasilinear correlation functions to estimate transport consequences of microinstabilities in tokamaks. Nonlinear Laser-Plasma Interaction Virtually all of the many instabilities driven by intense electromagnetic waves interacting with plasma were identified theoretically and studied in laser- plasma experiments during the past decade. Key nonlinear signatures predicted

Next: Collisional Relaxation of Nonneutral Plasmas »
Plasma Science: From Fundamental Research to Technological Applications Get This Book
×
Buy Paperback | $65.00 Buy Ebook | $54.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Plasma science is the study of ionized states of matter. This book discusses the field's potential contributions to society and recommends actions that would optimize those contributions. It includes an assessment of the field's scientific and technological status as well as a discussion of broad themes such as fundamental plasma experiments, theoretical and computational plasma research, and plasma science education.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!