National Academies Press: OpenBook
« Previous: Nonlinear Interaction of Intense Electromagnetic Waves with Plasmas
Suggested Citation:"Space Plasmas." National Research Council. 1995. Plasma Science: From Fundamental Research to Technological Applications. Washington, DC: The National Academies Press. doi: 10.17226/4936.
×
Page 167

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

THEORETICAL AND COMPUTATIONAL PLASMA PHYSICS 167 Current-Carrying Plasmas with Flow One research opportunity in laboratory plasma physics, which is synergistic with space and astrophysical plasmas (see next section, ''Space Plasmas"), is the investigation of current-carrying plasmas with flow. In these plasmas, global and/or turbulent flows are essential to the physics. By contrast, magnetic fusion plasmas are effectively stationary. Flowing plasmas present a new challenge to the experimentalist to design facilities in which the desired phenomena occur and to develop scaling arguments that laboratory plasmas are representative of the physics of space and astrophysical systems. To the theorist and applied mathematician, flowing plasmas are no less of a challenge because of the presence of several varieties of discontinuities, which must be understood as isolated, often collisionless processes and then incorporated self-consistently into the overall model just as hydrodynamicists incorporate shocks into supersonic flows. Discontinuities abound in plasmas. Even flows with velocities well below the Alfvén speed lead to singular current sheets in tokamaks and in the solar corona. And one need look no further than the solar photospheric magnetic field, which is concentrated into small regions of high intensity, to recognize that any theoretical understanding of dynamo generation of magnetic fields must accommodate an extraordinary degree of spatial intermittency. There has yet to be a successful laboratory demonstration of a hydromagnetic dynamo. With adequate support, visualization diagnostics can be implemented that promise to yield insights into magnetohydrodynamic flows comparable to those observed in hydrodynamic experiments. Engineering Design Tools The next decade should also see the development from the results of well- founded theories of simpler but robust tools for engineering design in the several areas of application of plasma physics, such as magnetic and inertial fusion, microwave devices, high-efficiency lamps, plasma processing, and particle accelerators. Space Plasmas In 1978, the National Research Council report Space Plasma Physics:The Study of Solar System Plasmas, prepared by a Space Science Board study committee headed by Stirling A. Colgate, strongly endorsed space plasma physics as "intrinsically an important branch of physics."2The Colgate report is widely considered to be the impetus for the present programmatic emphasis in the field. 2 National Research Council, Space Science Board, The Study of SolarSystem Plasmas, National Academy Press, Washington, D.C., 1978.

Next: Turbulence »
Plasma Science: From Fundamental Research to Technological Applications Get This Book
×
Buy Paperback | $65.00 Buy Ebook | $54.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Plasma science is the study of ionized states of matter. This book discusses the field's potential contributions to society and recommends actions that would optimize those contributions. It includes an assessment of the field's scientific and technological status as well as a discussion of broad themes such as fundamental plasma experiments, theoretical and computational plasma research, and plasma science education.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!