National Academies Press: OpenBook

Plasma Science: From Fundamental Research to Technological Applications (1995)

Chapter: Strongly Coupled Nonneutral Plasmas

« Previous: Stochastic Effects
Suggested Citation:"Strongly Coupled Nonneutral Plasmas." National Research Council. 1995. Plasma Science: From Fundamental Research to Technological Applications. Washington, DC: The National Academies Press. doi: 10.17226/4936.
×
Page 55

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

NONNEUTRAL PLASMAS 55 particle dynamics are characterized by well-defined single-particle constants of the motion at low beam intensity, where self-field effects are negligibly small, at higher beam intensity the particle orbits can become chaotic and sensitive to the detailed properties of the beam density and current profiles. We do not have a basic understanding of the influence of stochastic effects on the charge homogenization in periodic focusing quadrupole configurations or on the suppression of coherent free-electron-laser emission at high beam intensity. FIGURE 2.2 Shown is the cross section of a magnetized pure-electron plasma confined in a Penning trap. These plasmas were found to exhibit unexpectedly long confinement times. This good confinement is consistent with a recently developed theory that argues that such states are stable equilibria. The plasma is distorted into a triangular shape by the application of electrical potentials (indicated in volts) to sections of a cylindrical electrode structure. The calculated equipotential contours (solid lines) illustrate that the plasma edge follows such a contour. Note that the electrons are closer to the negative electrodes, as expected for a state of maximum electrostatic energy, and as predicted by the theory. (Reprinted, by permission, from J. Notte, A.J. Peurrung, J. Fajans, R. Chu, and J.S. Wurtele, Physical Review Letters 69:3056, 1992. Copyright © 1992 by the American Physical Society.) Strongly Coupled Nonneutral Plasmas Strongly coupled pure ion plasmas present another set of scientific opportunities. The evolution of the spatial ordering to the body-centered-cubic structure

Next: Antimatter »
Plasma Science: From Fundamental Research to Technological Applications Get This Book
×
 Plasma Science: From Fundamental Research to Technological Applications
Buy Paperback | $65.00 Buy Ebook | $54.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Plasma science is the study of ionized states of matter. This book discusses the field's potential contributions to society and recommends actions that would optimize those contributions. It includes an assessment of the field's scientific and technological status as well as a discussion of broad themes such as fundamental plasma experiments, theoretical and computational plasma research, and plasma science education.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!