National Academies Press: OpenBook

Plasma Science: From Fundamental Research to Technological Applications (1995)

Chapter: Ponderomotive Forces and the Filamentation of Electromagnetic Radiation.

« Previous: Magnetically Trapped Particle Instabilities.
Suggested Citation:"Ponderomotive Forces and the Filamentation of Electromagnetic Radiation.." National Research Council. 1995. Plasma Science: From Fundamental Research to Technological Applications. Washington, DC: The National Academies Press. doi: 10.17226/4936.
×
Page 135

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

BASIC PLASMA EXPERIMENTS 135 Lower Hybrid Wave Current Drive. Lower hybrid wave current drive, a fundamental Landau-damping process, describes the transfer of the momentum of traveling waves, which have been excited by an external source, to the momenta of the individual plasma particles. By choosing an appropriate wave, it is possible to induce a dc current in the plasma by trapping particles in the wave. The first experiments were done in a linear device. Subsequent toroidal experiments have investigated this interaction in detail by exploiting the unusual properties of lower hybrid waves. Efficient methods of current drive will be important in developing a steady-state fusion reactor. Beat Wave Excitation and Particle Acceleration. Basic laboratory experiments have demonstrated that when a plasma is irradiated by two electromagnetic waves whose frequency difference matches the local plasma frequency, very intense (GeV per centimeter) electric fields can be generated that travel at a significant fraction of the speed of light. Recently, it has been demonstrated in the laboratory that the controlled acceleration of a tenuous electron beam can result from its interaction with these plasma waves. Such studies suggest that compact particle accelerators based on this principle may be feasible. (See Figure 5.2.) Nonlinear Phenomena Double Layers. A fundamental nonlinear structure encountered in plasmas is the internal nonneutral sheath or double layer. A double layer can be thought of as the boundary between regions of plasmas having different particle distribution functions. An impressive body of experimental data has now been gathered from laboratory experiments on the shape, amplitude, and formation of these remarkable structures. These phenomena are important in space science. There are indications from satellite observations that double layers may form spontaneously in the near-earth plasma. The possible relationship between double layers and the formation of auroral beams is also being investigated. Ponderomotive Forces and the Filamentation of Electromagnetic Radiation. The ponderomotive force is one of the basic nonlinear affects governing plasma behavior. This force can be thought of as arising from the added plasma pressure produced by the oscillatory motion of charged particles in a strong electromagnetic field. When the amplitude of this field varies as a function of position, the spatial variation in this additional contribution to the pressure results in the ponderomotive force. Several experiments have elucidated the macroscopic nature of the ponderomotive force, the limits of fluid-like response, and the limitations set by the requirements for adiabatic behavior. A variety of experiments in magnetized plasmas have explored how to use the ponderomotive force to quench various configurational instabilities and thereby to produce quieter and longer-lived plasmas with improved particle and energy confinement.

Next: Plasma Reorganization. »
Plasma Science: From Fundamental Research to Technological Applications Get This Book
×
Buy Paperback | $65.00 Buy Ebook | $54.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Plasma science is the study of ionized states of matter. This book discusses the field's potential contributions to society and recommends actions that would optimize those contributions. It includes an assessment of the field's scientific and technological status as well as a discussion of broad themes such as fundamental plasma experiments, theoretical and computational plasma research, and plasma science education.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!