National Academies Press: OpenBook
« Previous: Molecules
Suggested Citation:"Neutral Dissociation." National Research Council. 1996. Database Needs for Modeling and Simulation of Plasma Processing. Washington, DC: The National Academies Press. doi: 10.17226/5434.
Page 42

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

ELECTRON COLLISION PROCESSES 42 examples of reliable data for dissociative ionization, such as CH4, SiH4, CF4, and SF6; generally the data are lacking. As noted in Chapter 3, "Radiative Processes and Diagnostics," this lack of data for dissociative ionization, especially near threshold, can significantly limit the ability to quantitatively interpret mass spectrometric measurements. This is the case because a common tactic for measurement of radical concentrations with mass spectrometry is to reduce the electron impact energy to near threshold. Generally, this approach allows discrimination between a signal from a parent molecule ionizing dissociatively and the radical of interest. However, if the parent molecule is vibrationally excited (for example), its dissociative ionization cross section may increase near threshold (see discussion above). This results in a significant drop in confidence in the technique, and may invalidate it completely. Very recently, there have been efforts to measure ionization and dissociative ionization cross sections for complex metal-organic and silicon-organic molecules used in deposition plasmas.3 When considering ion formation by dissociation in discharges, polar dissociation must also be taken into account. Although this is usually a minor process for positive-ion formation, it can make a significant contribution to negative-ion formation. Radicals are a class of highly reactive molecular species that are frequent products in plasma processing. Electron-impact ionization cross sections have been measured to ±20% for SiFx and CFx (x = 1-3), NF2, NF, and SO. These studies apply to ground state targets only. Only a few research groups are actively studying electron-impact ionization, and in even fewer cases have the research programs focused on substances pertinent to plasma processing. Theoretical Methods and Advances For molecules and radicals, the state of the art has until recently consisted of empirical and semiempirical methods and simplistic additivity rules. Recently there have been several new developments: (1) two modified additivity rules that attempt to account for molecular bonding; (2) the Deutsch-Mark formalism, which combines a Gryzinsky-type energy dependence with quantum mechanically calculated molecular structure information (also applicable to atoms); and (3) a new binary-encounter dipole theory. Neutral Dissociation In cases where electron-impact dissociation produces electronically excited fragments that decay radiatively, studies use the optical excitation function technique. Emissions have been measured over a wide spectral range. Several molecules relevant to plasma processing have been studied, providing dissociation cross sections for CF4, SF6, NF3, BCl3,4 and several freons and halogenated methane compounds. Using traditional beam techniques to measure cross sections for electron-impact dissociation of molecules into neutral products is extremely difficult, especially when the dissociation fragments are in the ground state or do not radiate. This difficulty is caused by the lack of sensitive methods for detecting neutral fragments. One beam technique that has been used successfully for measurement of dissociation cross sections involves fast neutral beams formed by charge transfer in conjunction with coincident product detection techniques. In these configurations there can be significant uncertainty in the excited state distribution of the neutral target molecules formed in the charge-transfer process. This method has been applied to the relatively simple molecules N2, O2, CO, and, most relevant to plasma processing, C12. The technique can be extended to other simple molecules that are dominated by two-fragment break-up channels. A serious limitation will arise when the method is applied to more complex polyatomic molecules for which many break-up channels with different numbers of fragments compete. This is at present the only suitable method for studying the dissociation of free radicals into neutral ground-state fragments. Another beam technique is the so-called two-electron-beam technique, in which the first electron beam is used to dissociate the target molecules and a second electron beam "downstream" is used to probe the

Database Needs for Modeling and Simulation of Plasma Processing Get This Book
Buy Paperback | $47.00 Buy Ebook | $37.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

In spite of its high cost and technical importance, plasma equipment is still largely designed empirically, with little help from computer simulation. Plasma process control is rudimentary. Optimization of plasma reactor operation, including adjustments to deal with increasingly stringent controls on plant emissions, is performed predominantly by trial and error. There is now a strong and growing economic incentive to improve on the traditional methods of plasma reactor and process design, optimization, and control. An obvious strategy for both chip manufacturers and plasma equipment suppliers is to employ large-scale modeling and simulation. The major roadblock to further development of this promising strategy is the lack of a database for the many physical and chemical processes that occur in the plasma. The data that are currently available are often scattered throughout the scientific literature, and assessments of their reliability are usually unavailable.

Database Needs for Modeling and Simulation of Plasma Processing identifies strategies to add data to the existing database, to improve access to the database, and to assess the reliability of the available data. In addition to identifying the most important needs, this report assesses the experimental and theoretical/computational techniques that can be used, or must be developed, in order to begin to satisfy these needs.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook,'s online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!