National Academies Press: OpenBook
« Previous: Part Five: Epilogue
Suggested Citation:"Appendix A." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×

A—
Sources of Problems and Tasks

SUSAN FORMAN AND LYNN ARTHUR STEEN

Potential tasks for High School Mathematics at Work were solicited from many sources. Printed announcements of the project were distributed at national meetings of various professional societies; e-mail invitations were sent to many mathematicians, educators, and policy leaders; special invitations were extended to leaders of major high school curriculum and assessment projects, both academic and vocational; panel presentations were arranged to address the key question of what mathematics every high school graduate should know and be able to do; and visits were made to corporations to solicit examples of typical work tasks that require mathematical knowledge and insight.

From this enormous volume and variety of problems, the Task Force and its consultants shaped tasks for inclusion in the volume—by selection, by revision, by combination, and by creation. Virtually none of the tasks presented here are the same as originally proposed: each has been transformed to fit the context of this volume. Similarly, teachers who may wish to use these or other tasks will need to adapt them to their own contexts. The process of adaptation reinforces one of the key lessons of High School Mathematics at Work, namely, that context is important for mathematics.

That said, we list below the types of sources we found helpful in preparing High School Mathematics at Work. Though this list is intended to be illustrative

Suggested Citation:"Appendix A." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×

rather than exhaustive, we apologize for omitting any particularly fruitful sources. Similar lists tied to regional contexts should be of help to teachers who want to offer their students more locally relevant but similar tasks.

From Industry and Government

Big companies and government agencies are awash in data, from the manufacturing floor to the sales office: effective companies expect all their employees to use these data for planning and quality control. For this project, we found interesting examples from different industrial and governmental sectors: transportation (Boeing), electronics (Motorola), entertainment (Disney), food (Starbucks), construction (Hilti), and health (Oregon Center for Health Statistics).

From School-to-Work Programs

Many organizations are working to develop effective school-business partnerships. These programs operate under titles such as "tech-prep" and "school-to-work." They include regional education consortia (e.g., the East San Gabriel Valley Regional Occupational Project or the Pennsylvania Youth Apprenticeship Program), regional corporate consortia (e.g., the Washington State Manufacturing Technology Advisory Group or Craftsmanship 2000 in Tulsa, Oklahoma); and curriculum development organizations (e.g., the Consortium on Occupational Research and Development [CORD] in Waco, Texas, or the School-to-Work project of the Learning Research and Development Center [LRDC] at the University of Pittsburgh).

From High Schools

Many districts have special high schools devoted to vocational or technological education. Some (e.g., Rindge School of Technical Arts in Cambridge, Massachusetts; Leander High School in Leander, Texas; the Williamson Free School of Mechanical Trades in Philadelphia) provide a comprehensive philosophy uniting vocational and academic education. Others (e.g., Franklin High School in Portland, Oregon, Brooklyn Technical High School in New York) have special projects (STELLA at Franklin, Design Challenge at Brooklyn Tech) that offer stimulating ideas for how mathematics relates to other subjects.

From College Programs

Although High School Mathematics at Work is about high school mathematics, many programs with similar tasks can be found at two- and four-year colleges. Some of these have been supported by federal grants, others with local funds. Among those that contributed to High School Mathematics at Work are the Mathematics in Industry project at Henry Ford Community College, Dearborn, Michigan (Barbara Near, Project Director), Snapshots of Applications in Mathematics at SUNY College of Technology in Delhi, New York (Dennis Callas,

Suggested Citation:"Appendix A." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×

Project Director), and Interactive Mathematics at Mt. Hood Community College in Oregon (Penny Slingerland et al., project directors). More recent projects supported by the National Science Foundation's (NSF) Advanced Technological Initiative (ATE) program can be found at Wentworth Institute (Gary Simundza, Director) and Johns Hopkins University (Arnold Packer, Director).

From Curriculum and Assessment Projects

Many innovative tasks can be found in the material produced by the several nationally funded curriculum and assessment projects. High School Mathematics at Work benefited especially from ideas submitted by the Balanced Assessment Project, the Interactive Mathematics Project, the New Standards Project, and the Connecticut Academic Performance Test in Mathematics.

From Individuals

Many individuals contributed special ideas to High School Mathematics at Work—far more than can be named here or even recalled. We do mention, however, a few individuals who direct centers or projects that we found to be particularly rich sources of ideas: Dick Stanley, Charles A. Dana Center, University of California, Berkeley; Peter Costa, Center for Applied Mathematics, University of St. Thomas; Avner Friedman, Director of the Institute for Mathematics and Its Applications at the University of Minnesota; Cindy Hannon, Tech Prep Coordinator, Maryland State Department of Education; Thomas Hsu, Cambridge Physics Outlet, Woburn, Massachusetts; and Martin Nahemow, Director of School-to-Work Programs, LRDC, University of Pittsburgh,

From Coordinating Organizations

Several organizations serve as helpful sources of contacts for particular projects and programs. These include Schools that Work, a project directed by Gene Bottoms for the Southern Regional Education Board; the Advanced Technological Education (ATE) Program of the NSF (Elizabeth Teles and Gerhard Salinger, Program Directors); the National Center for Research in Vocational Education (NCRVE) at the University of California, Berkeley (Norton Grubb and David Stern, Directors); the Institute on Education and the Economy at Columbia University (Thomas Bailey, Director); and Jobs for the Future in Boston (Hilary Pennington, President and Susan Goldberger, Program Director).

From Special Sources

Ideas for tasks in High School Mathematics at Work also came from the National Security Agency's Summer Mathematics Teacher Institutes (Fort Meade, Maryland) and the TEAMS Competition of the Junior Engineering Technical Society (JETS). For similar problems from new sources, we suggest some of the NSF ATE projects, for example, the Sinclair Center and the Center for Image Processing in Education. Of course, some of the very best

Suggested Citation:"Appendix A." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×

sources are the members of the Task Force for High School Mathematics at Work, who worked extensively with the many tasks that were reviewed in the process of preparing this volume.

These diverse institutions and programs illustrate both the particular sources from which High School Mathematics at Work was developed, and also the enormous variety of places that educators should look to in their search for tasks that are mathematically rich and contextually relevant.

Suggested Citation:"Appendix A." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×
Page 163
Suggested Citation:"Appendix A." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×
Page 164
Suggested Citation:"Appendix A." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×
Page 165
Suggested Citation:"Appendix A." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×
Page 166
Next: Appendix B »
High School Mathematics at Work: Essays and Examples for the Education of All Students Get This Book
×
Buy Paperback | $41.00 Buy Ebook | $32.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Traditionally, vocational mathematics and precollege mathematics have been separate in schools. But the technological world in which today's students will work and live calls for increasing connection between mathematics and its applications. Workplace-based mathematics may be good mathematics for everyone.

High School Mathematics at Work illuminates the interplay between technical and academic mathematics. This collection of thought-provoking essays—by mathematicians, educators, and other experts—is enhanced with illustrative tasks from workplace and everyday contexts that suggest ways to strengthen high school mathematical education.

This important book addresses how to make mathematical education of all students meaningful—how to meet the practical needs of students entering the work force after high school as well as the needs of students going on to postsecondary education.

The short readable essays frame basic issues, provide background, and suggest alternatives to the traditional separation between technical and academic mathematics. They are accompanied by intriguing multipart problems that illustrate how deep mathematics functions in everyday settings—from analysis of ambulance response times to energy utilization, from buying a used car to "rounding off" to simplify problems.

The book addresses the role of standards in mathematics education, discussing issues such as finding common ground between science and mathematics education standards, improving the articulation from school to work, and comparing SAT results across settings.

Experts discuss how to develop curricula so that students learn to solve problems they are likely to encounter in life—while also providing them with approaches to unfamiliar problems. The book also addresses how teachers can help prepare students for postsecondary education.

For teacher education the book explores the changing nature of pedagogy and new approaches to teacher development. What kind of teaching will allow mathematics to be a guide rather than a gatekeeper to many career paths? Essays discuss pedagogical implication in problem-centered teaching, the role of complex mathematical tasks in teacher education, and the idea of making open-ended tasks—and the student work they elicit—central to professional discourse.

High School Mathematics at Work presents thoughtful views from experts. It identifies rich possibilities for teaching mathematics and preparing students for the technological challenges of the future. This book will inform and inspire teachers, teacher educators, curriculum developers, and others involved in improving mathematics education and the capabilities of tomorrow's work force.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!