National Academies Press: OpenBook
« Previous: Appendix A
Suggested Citation:"Appendix B." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×

B—
Task Force Members

HYMAN BASS is Professor of Mathematics at Columbia University. He is Chair of the Mathematical Sciences Education Board (MSEB), has served on the Executive Committee for the American Mathematical Society, and was Chair of the Board of Trustees for the Mathematical Sciences Research Institute, Berkeley. He is a member of the National Academy of Sciences.

BRUCE JACOBS taught at Laney College in the Peralta Community College District for 24 years. During that time, he served as Director of the Experimental College, as Chairperson of the Mathematics Department, and as Director of Project Bridge, an integrated basic skills program that has been nationally recognized. Jacobs has served as a consultant to library literacy programs working on basic mathematics skills and with programs working with the deaf and other disabled people. He has also served on a State of California Work Team designing a State School-to-Work plan.

TONY Q. MARTINEZ has been teaching at Leander High School since 1982 and is currently the Mathematics Department Chair. During this time, he has implemented CORE Applied Mathematics and has served as a nationally recognized teacher trainer for the curriculum. Martinez has served on the Texas Education

Suggested Citation:"Appendix B." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×

Agency's Item Review Committee for the Texas Assessment of Academic Skills and has most recently been selected as a Master Teacher for the National Teacher Training Institute for Math, Science, and Technology. He is currently a member of the Austin Area Council of Teachers of Mathematics, the Texas Council of Teacher of Mathematics, the Texas Association of Supervisors of Mathematics, and the National Council of Teachers of Mathematics.

PAMELA MATTHEWS is a faculty member at American University and was a community college instructor for 25 years. As an administrator at Mt. Hood Community College, she was the Principal Investigator of the National Science Foundation's Advanced Technological Education project, "An Application-Based, Technology-Supported, One-Track Mathematics Curriculum." She serves on the Mathematical Association of America's Committee on the Teaching of Undergraduate Mathematics and was a member of the National Council of Teachers of Mathematics and American Vocational Association's Joint Task Force on Mathematics and Vocational Education. She serves on the Executive Committee of the MSEB and on the National Advisory Committee of the Los Angeles Collaborative for Teacher Excellence, a National Science Foundation funded project. She was on the writing team of the National Research Council's publication, Mathematics and Science Education Around the World: What Can We Learn from the Survey of Mathematics and Science Opportunities (SMSO) and the Third International Mathematics and Science Study (TIMSS)?.

PATRICK MCCRAY is Systems Project Leader at G.D. Searle & Co., Monsanto. He is a member of the American Mathematical Society (AMS) Short Course Subcommittee and has served as Chair of the committee. He has served as Governor-At-Large on the Mathematical Association of America (MAA) Board of Governors, and as a member of the MAA Taskforce on Board Effectiveness. At the state level, he has served as Chair of the Illinois Section of the MAA and as Editor of its newsletter, Greater than Zero. In addition to belonging to the AMS and MAA, McCray is a member of the Association for Women in Mathematics, the Association for Computing Machinery, and the Institute of Electrical and Electronics Engineers' Computer Society.

KAREN DEE MICHALOWICZ has been in secondary education for 33 years. She is the Upper School Mathematics Chair at the Langley School in McLean, Virginia. In addition, she holds an Adjunct Faculty position at George Mason University. She is a Presidential Awardee for Excellence in Mathematics Teaching.

HENRY O. POLLAK was a research mathematician at Bell Laboratories for 32 years and an Assistant Vice-President at Bellcore for three years. He retired in 1986 and is now a visiting Professor of Mathematics Education at Teachers College, Columbia University.

Suggested Citation:"Appendix B." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×

JACK PRICE is Professor of Mathematics Education and Co-director of the Center for Education and Equity in Mathematics, Science, and Technology in the College of Science, California State Polytechnic University, Pomona. He is the immediate past President of the National Council of Teachers of Mathematics (NCTM).

ALAN H. SCHOENFELD is the Elizabeth and Edward Conner Professor of Education and Professor of Mathematics at the University of California, Berkeley. Schoenfeld's research is on mathematical thinking, teaching, and learning. He has focused on problem solving and assessment and is currently a writing group leader for the NCTM's Future of the Standards project, also called "Standards 2000."

DANIEL TEAGUE has recently served on the MSEB, on the Editorial Board of NCTM's Student Math Notes, as the technology consultant for the NCTM Secondary Level standards Addenda Projects, and as a member of NCTM's Commission on the Future of the Standards. From 1985 to 1991 and again in 1993, Mr. Teague served as Co-director of the Woodrow Wilson Summer Mathematics Institutes. Teague and Helen Compton are section editors of "Everybody's Problems" for the Consortium for Mathematics and Its Applications (COMAP).

Suggested Citation:"Appendix B." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×

There was a problem loading page 170.

Suggested Citation:"Appendix B." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×
Page 167
Suggested Citation:"Appendix B." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×
Page 168
Suggested Citation:"Appendix B." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×
Page 169
Suggested Citation:"Appendix B." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.
×
Page 170
Next: Index »
High School Mathematics at Work: Essays and Examples for the Education of All Students Get This Book
×
Buy Paperback | $41.00 Buy Ebook | $32.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Traditionally, vocational mathematics and precollege mathematics have been separate in schools. But the technological world in which today's students will work and live calls for increasing connection between mathematics and its applications. Workplace-based mathematics may be good mathematics for everyone.

High School Mathematics at Work illuminates the interplay between technical and academic mathematics. This collection of thought-provoking essays—by mathematicians, educators, and other experts—is enhanced with illustrative tasks from workplace and everyday contexts that suggest ways to strengthen high school mathematical education.

This important book addresses how to make mathematical education of all students meaningful—how to meet the practical needs of students entering the work force after high school as well as the needs of students going on to postsecondary education.

The short readable essays frame basic issues, provide background, and suggest alternatives to the traditional separation between technical and academic mathematics. They are accompanied by intriguing multipart problems that illustrate how deep mathematics functions in everyday settings—from analysis of ambulance response times to energy utilization, from buying a used car to "rounding off" to simplify problems.

The book addresses the role of standards in mathematics education, discussing issues such as finding common ground between science and mathematics education standards, improving the articulation from school to work, and comparing SAT results across settings.

Experts discuss how to develop curricula so that students learn to solve problems they are likely to encounter in life—while also providing them with approaches to unfamiliar problems. The book also addresses how teachers can help prepare students for postsecondary education.

For teacher education the book explores the changing nature of pedagogy and new approaches to teacher development. What kind of teaching will allow mathematics to be a guide rather than a gatekeeper to many career paths? Essays discuss pedagogical implication in problem-centered teaching, the role of complex mathematical tasks in teacher education, and the idea of making open-ended tasks—and the student work they elicit—central to professional discourse.

High School Mathematics at Work presents thoughtful views from experts. It identifies rich possibilities for teaching mathematics and preparing students for the technological challenges of the future. This book will inform and inspire teachers, teacher educators, curriculum developers, and others involved in improving mathematics education and the capabilities of tomorrow's work force.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!