National Academies Press: OpenBook

Lessons Learned from the Clementine Mission (1997)

Chapter: Front Matter

Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×

Lessons Learned from the Clementine Mission

Committee on Planetary and Lunar Exploration

Space Studies Board

Commission on Physical Sciences, Mathematics, and Applications

National Research Council

NATIONAL ACADEMY PRESS
Washington, D.C.
1997

Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×

NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.

This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee consisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce Alberts is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. William A. Wulf is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy' s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce Alberts and Dr. William A. Wulf are chairman and vice chairman, respectively, of the National Research Council.

Support for this project was provided by Contract NASW 4627 and Contract NASW 96013 between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that provided support for this project.

Copies of this report are available free of charge from

Space Studies Board

National Research Council

2101 Constitution Avenue, N.W.

Washington, D.C. 20418

Copyright 1997 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

Cover: A mosaic of the Moon's south polar region assembled from images taken by the Clementine spacecraft. Courtesy of the U.S. Geological Survey.

Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×

COMMITTEE ON PLANETARY AND LUNAR EXPLORATION

JOSEPH A. BURNS,*

Cornell University,

Chair

RONALD GREELEY,

Arizona State University,

Continuing Chair

JAMES ARNOLD,**

University of California, San Diego

FRANCES BAGENAL,

University of Colorado

JEFFREY R. BARNES,

Oregon State University

GEOFFREY A. BRIGGS,*

NASA Ames Research Center

MICHAEL H. CARR,*

U.S. Geological Survey

PHILIP R. CHRISTENSEN,**

Arizona State University

RUSSELL DOOLITTLE,

University of California, San Diego

JAMES L. ELLIOT,*

Massachusetts Institute of Technology

HEIDI HAMMEL,

Massachusetts Institute of Technology

BARRY H. MAUK,*

Applied Physics Laboratory

GEORGE McGILL,

University of Massachusetts

WILLIAM B. McKINNON,*

Washington University

HARRY McSWEEN, JR.,

University of Tennessee

TED ROUSH,

San Francisco State University

JOHN RUMMEL,

Marine Biological Laboratory

GERALD SCHUBERT,

University of California, Los Angeles

EUGENE SHOEMAKER,

Lowell Observatory

DARRELL F. STROBEL,**

Johns Hopkins University

ALAN T. TOKUNAGA,**

University of Hawaii

ROGER YELLE,**

Boston University

MARIA T. ZUBER,**

Massachusetts Institute of Technology

Staff

DAVID H. SMITH, Study Director

ALTORIA B. ROSS, Senior Program Assistant

ERIN C. HATCH, Research Assistant

MICHAEL FEY, Research Assistant

STEPHANIE ROY, Research Assistant

*  

Term ended in 1995.

**  

Term ended in 1996.

Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×

SPACE STUDIES BOARD

CLAUDE R. CANIZARES,

Massachusetts Institute of Technology,

Chair

MARK R. ABBOTT,

Oregon State University

JOHN A. ARMSTRONG,*

IBM Corporation (retired)

JAMES P. BAGIAN,

Environmental Protection Agency

DANIEL N. BAKER,

University of Colorado, Boulder

LAWRENCE BOGORAD,

Harvard University

DONALD E. BROWNLEE,

University of Washington

JOSEPH A. BURNS,*

Cornell University

JOHN J. DONEGAN,

John Donegan Associates, Inc.

GERARD W. ELVERUM, JR.,

TRW

ANTHONY W. ENGLAND,

University of Michigan

DANIEL J. FINK,*

D.J. Fink Associates, Inc.

MARTIN E. GLICKSMAN,

Rensselaer Polytechnic Institute

RONALD GREELEY,

Arizona State University

BILL GREEN, former member,

U.S. House of Representatives

HAROLD J. GUY,*

University of California, San Diego

NOEL W. HINNERS,*

Lockheed Martin Astronautics

ANDREW H. KNOLL,

Harvard University

JANET G. LUHMANN,

University of California, Berkeley

JOHN H. McELROY,*

University of Texas, Arlington

ROBERTA BALSTAD MILLER,

CIESIN

BERRIEN MOORE III,

University of New Hampshire

KENNETH H. NEALSON,

University of Wisconsin, Milwaukee

MARY JANE OSBORN,

University of Connecticut Health Center

SIMON OSTRACH,

Case Western Reserve University

MORTON B. PANISH,

AT&T Bell Laboratories (retired)

CARLÉ M. PIETERS,

Brown University

JUDITH PIPHER,*

University of Rochester

MARCIA J. RIEKE,

University of Arizona

ROLAND SCHMITT,*

Clifton Park, New York

JOHN A. SIMPSON,

University of Chicago

ARTHUR B.C. WALKER, JR.,*

Stanford University

ROBERT E. WILLIAMS,

Space Telescope Science Institute

MARC S. ALLEN, Director

*  

Former member.

Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×

COMMISSION ON PHYSICAL SCIENCES, MATHEMATICS, AND APPLICATIONS

ROBERT J. HERMANN,

United Technologies Corporation,

Co-chair

W. CARL LINEBERGER,

University of Colorado, Boulder,

Co-chair

PETER M. BANKS,

Environmental Research Institute of Michigan

LAWRENCE D. BROWN,

University of Pennsylvania

RONALD G. DOUGLAS,

Texas A&M University

JOHN E. ESTES,

University of California, Santa Barbara

L. LOUIS HEGEDUS,

Elf Atochem North America, Inc.

JOHN E. HOPCROFT,

Cornell University

RHONDA J. HUGHES,

Bryn Mawr College

SHIRLEY A. JACKSON,

U.S. Nuclear Regulatory Commission

KENNETH H. KELLER,

University of Minnesota

KENNETH I. KELLERMANN,

National Radio Astronomy Observatory

MARGARET G. KIVELSON,

University of California, Los Angeles

DANIEL KLEPPNER,

Massachusetts Institute of Technology

JOHN KREICK,

Sanders, a Lockheed Martin Company

MARSHA I. LESTER,

University of Pennsylvania

THOMAS A. PRINCE,

California Institute of Technology

NICHOLAS P. SAMIOS,

Brookhaven National Laboratory

L.E. SCRIVEN,

University of Minnesota

SHMUEL WINOGRAD,

IBM T.J. Watson Research Center

CHARLES A. ZRAKET,

MITRE Corporation (retired)

NORMAN METZGER, Executive Director

Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
This page in the original is blank.
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×

Foreword

Thirty years after Ranger 7's first close-up photography of the Moon and 25 years after the Apollo 11 astronauts' first steps, the compact Clementine satellite entered lunar orbit. Whereas Apollo remains the most ambitious and expensive U.S. space endeavor, Clementine is an archetype of the "smaller, faster, cheaper" approach dictated by today's fiscal realities.

Clementine was the product of innovative technical and management approaches in the Ballistic Missile Defense Organization of the Department of Defense. Its primary goal was to demonstrate that advanced capabilities could be achieved at relatively low cost; the scientific objectives were secondary.

In this study, the Space Studies Board' s Committee on Planetary and Lunar Exploration (COMPLEX) considers some lessons to be learned from Clementine about reaping the most science possible from a technology-focused space mission and about the relevance of this experience to future NASA satellites that leave low Earth orbit. Not surprisingly, many of the findings stated here echo a recent Space Studies Board report assessing changes in the Explorer program of Earth-orbiting satellites.1 Both studies focus on the need for crisp management structures with adequate authority and responsibility to ensure that projects will be executed quickly—since there are natural limits on how quickly project money can be effectively spent, "faster" is almost synonymous with "cheaper."

This report complements COMPLEX's earlier examination of the role of small missions in solar system research.2 Taken together, these studies are cautiously optimistic about the possibility of addressing some high-priority solar system exploration with spacecraft of modest cost. Whatever else it accomplished, Clementine's success in mapping the Moon established an important precedent for the conduct of space research.

CLAUDE R. CANIZARES, CHAIR

SPACE STUDIES BOARD

1  

Space Studies Board, National Research Council, Assessment of Recent Changes in the Explorer Program, National Academy Press, Washington, D.C., 1996.

2  

Space Studies Board, National Research Council, The Role of Small Missions in Planetary and Lunar Exploration, National Academy Press, Washington, D.C., 1995.

 

Page viii Cite
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
This page in the original is blank.
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×

Preface

The Committee on Planetary and Lunar Exploration (COMPLEX) advises the Space Studies Board on the entire range of planetary science studies; these include both ground-based activities and space-based efforts. The disciplinary scope of this advice includes the geosciences, atmospheres, exobiology, particles and fields, planetary astronomy, and the search for planets around other stars.

The Ballistic Missile Defense Organization (BMDO)/National Aeronautics and Space Administration (NASA) Clementine mission was designed to space-qualify advanced, lightweight imaging sensors and component technologies and to test autonomous operation for the next generation of Department of Defense spacecraft. A secondary objective was to perform a 2-month global mapping survey of the Moon at several visible/infrared wavelengths and an imaging flyby of the near-Earth asteroid 1620 Geographos. Because of a software error, the asteroid flyby along with its accompanying test of the autonomous acquisition and tracking of a cold body was aborted. Clementine implemented a streamlined management approach that included a rapid design and development program, with an approval-to-launch time line of 22 months and innovative mission operations and data handling setups. The spacecraft was designed, built, tested, launched, and operated for a reported cost of $80 million.

With a trend toward smaller, focused space science missions (such as those in NASA's Discovery, Mars Surveyor, Earth Probe, Small Explorer, and MidEx programs), the Clementine experience may hold lessons for both the scientific and engineering communities as they enter an era of "smaller, faster, cheaper" missions. As a result, in late summer 1994, the Space Studies Board charged COMPLEX to conduct a study to:

  1. Understand the lessons learned from Clementine with regard to its schedule, budget, management approach, technology utilization, mission operations, and data processing procedures;
  2. Assess in a preliminary way the scientific return of the Clementine mission in the context of its instrument complement and mission profile; and
  3. Make recommendations as to how positive aspects of Clementine can be incorporated into NASA's future small-spacecraft missions.

Although the study formally began at COMPLEX' s October 1994 meeting, many of the committee members were already familiar with the outlines of the mission from briefings received from, among others, Eugene

Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×

Shoemaker,* leader of the Clementine science team, during the preparation of a short report on Clementine in 1992 ("Scientific Assessment of the Strategic Defense Initiative Organization's Integrated Sensor Experiment (Clementine)," a letter report sent to Simon P. Worden and Wesley T. Huntress, Jr., on August 21, 1992). In addition, COMPLEX was briefed on Clementine by its program manager at BMDO, Col. Pedro Rustan, and also toured the Clementine control center in late 1993 (i.e., prior to launch) during the preparation of its report, The Role of Small Missions in Planetary and Lunar Exploration (National Academy Press, Washington, D.C., 1995). Lastly, shortly after the mission ended, Maria Zuber, a member of the committee and a scientist associated with Clementine's Lidar instrument, briefed COMPLEX on the mission's preliminary science findings.

During the October 1994 meeting COMPLEX received presentations from members of the Clementine science team, including Alfred McEwen, Paul Lucey, and David E. Smith, and from the lunar science community in the person of Roger Phillips (chair of NASA's Lunar Exploration Science Working Group). Details on the operational aspects of Clementine were presented by Paul Regeon (Clementine program manager at the Naval Research Laboratory), Stewart Nozette (BMDO's deputy program manager for Clementine I), Donald Horan (science operations manager), and Trevor Sorensen (lunar mission manager). COMPLEX also received additional input on Clementine' s instrumentation, technology, and operations in the form of copies of presentations given at the Clementine Engineering and Technology Workshop (Lake Tahoe, July 18-19, 1994) and follow-up discussions with individual presenters. An initial draft of the report was finalized at COMPLEX's February 1995 meeting and received initial approval by the Space Studies Board in March 1995. The report was updated and extensively revised during the autumn and winter of 1996.

*  

Although Dr. Shoemaker became a member of COMPLEX in 1995, he played no role in this study.

Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
This page in the original is blank.
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Page R1
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Page R2
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Page R3
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Page R4
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Page R5
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Page R6
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Page R7
Page viii Cite
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Page R8
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Page R9
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Page R10
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Page R11
Suggested Citation:"Front Matter." National Research Council. 1997. Lessons Learned from the Clementine Mission. Washington, DC: The National Academies Press. doi: 10.17226/5815.
×
Page R12
Next: Executive Summary »
Lessons Learned from the Clementine Mission Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF
  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!