National Academies Press: OpenBook

Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century (1998)

Chapter: Biographical Sketches of Committee Members

« Previous: References
Suggested Citation:"Biographical Sketches of Committee Members." National Research Council. 1998. Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century. Washington, DC: The National Academies Press. doi: 10.17226/6042.
×

Biographical Sketches of Committee Members

DAVID W. JOHNSON (chair) is head of metallurgy and ceramics research at Bell Laboratories, Lucent Technologies, and adjunct professor of materials science at Stevens Institute of Technology. His research activities include fabrication and processing of spinel ferrites and sol-gel processing of glass and ceramics. He is a fellow of the American Ceramic Society, has chaired an American Society of Testing and Materials subcommittee, and is a member of several other professional societies. Dr. Johnson has won the Taylor Lecture Award from Pennsylvania State University, the Fulrath Award from the American Ceramic Society, and the Ross Coffin Purdy Award for the best paper in ceramic literature. Dr. Johnson was elected to the National Academy of Engineering in 1993 for his discovery of new compositions and processing techniques and their transfer to manufacturing.

ANTHONY G. EVANS is the Gordon McKay Professor of Materials Engineering at Harvard University. His research interests include the mechanical properties of brittle materials particularly the fracture of ceramics under conditions of impact; thermal and mechanical stress; and failure prediction based on nondestructive evaluation. He is a recipient of the American Ceramic Society's Ross Coffin Purdy Award and has authored and co-authored several publications. Dr. Evans is a member of the National Materials Advisory Board and has served on several National Research Council committees. Dr. Evans was elected to the National Academy of Engineering in 1997 for his contributions to the development and understanding of structural materials.

RICHARD W. GOETTLER has been active in the development of ceramic matrix composites through his employment for the last five years as a research engineer at McDermott Technology Incorporated (formerly Babcock & Wilcox), and the previous three years at McDonnell Douglas Aircraft Company. He is making advances in many of the key enabling technologies, including cost processing routes and the tailoring of fiber-matrix interfaces, which are necessary for the successful implementation of ceramic matrix composites in the defense and commercial industries. Mr. Goettler 's work on engineering nonreactive, weak fiber-matrix interfaces makes him cognizant of the chemical requirements of fibers, in combination with the interface and matrix materials. In addition, he has worked with turbine suppliers to assess fiber performance requirements for an oxide continuous-fiber ceramic composite combustor.

MARTIN HARMER is the Alcoa Foundation Professor of Materials Science and Engineering and the director of the Materials Research Center at Lehigh University. He has played a major role in initiating and developing the ceramic research program at Lehigh University and has published more than 100 articles in the general area of ceramic processing and microstructure-property relations in ceramics. Dr. Harmer's current research interests include the design of novel multiphase microstructures for improved mechanical performance of ceramics. In addition to several other honors, he is a former National Science Foundation Presidential Young Investigator, a fellow of the American Ceramic Society, twice the recipient of the Rowland B. Snow Award from the American Ceramic Society, and a recent recipient of the National Science Foundation's Creativity Award. Dr. Harmer is a past chair of the Gordon Conference on Solid State Studies in Ceramics, was a representative at the United States-Japan Joint Seminar on Ceramic Processing in 1990, and is involved in several other professional activities.

JONATHAN LIPOWITZ, Dow Corning Corporation, has more than 30 years of industrial research experience. Among other topics, his research interests include the micro- and nanostructure of ceramic fibers derived from organosilicon precursors and polycrystalline silicon carbide fibers derived from organosilicon polymers. Dr. Lipowitz has nearly 20 U.S. patents and more than 50 publications to his credit. He is a member of several professional and honorary societies, including the American Ceramic Society, the Materials Research Society, Sigma Xi, and the New York Academy of Science.

KRISHAN L. LUTHRA, General Electric Corporation, has 20 years of corporate research and development experience in high-temperature materials. His research interests include thermodynamics and kinetics of high-temperature reactions and corrosion at elevated temperatures, particularly in the context of fiber-matrix interfaces in high-temperature composites. Dr. Luthra is a member of the Electrochemical Society, the Metallurgical Society, and the American Institute of Mining, Metallurgy, and Petroleum Engineers. He is a past research fellow at the Department of Metallurgy and Materials Science, University of Pennsylvania.

Suggested Citation:"Biographical Sketches of Committee Members." National Research Council. 1998. Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century. Washington, DC: The National Academies Press. doi: 10.17226/6042.
×

PAUL PALMER has more than 10 years of experience in business and product development, marketing, planning, and related analysis with aerospace and related industries. His current emphasis is on commercializing new materials technologies at Thermo Fibergen. As a project manager at IBIS Associates, Inc., Mr. Palmer led consulting engagements with aerospace companies and government-industry consortia for advanced technology commercialization. Projects have included studies in the manufacturing costs of advanced ceramic fibers and their composites for the Integrated High Performance Turbine Engine Technology Consortium. He also has experience performing airframe structural analyses for General Dynamics Corporation (now the Tactical Aircraft Division of Lockheed-Martin).

KARL PREWO is manager of materials sciences at United Technologies Research Center. In this position, he directs a research group in the area of ceramics, metals and metal matrix, and ceramic matrix composites. He has more than 20 years of industrial research experience and has written many articles in the area of fiber-reinforced metals and ceramics. He is a recipient of United Technologies' highest award for engineering achievement, the George Mead Medal, the Medal of Excellence in Composite Materials from the University of Delaware Center of Composite Materials, and is a fellow of the American Society for Materials. Dr. Prewo has served on two previous National Research Council committees.

RICHARD E. TRESSLER is the head of the Department of Materials Science and Engineering at Pennsylvania State University. His research interests include the fabrication and mechanical behavior of structural ceramic fibers and composite materials, fracture and strengthening mechanisms for structural ceramic materials, and integrated circuit processing and properties. Dr. Tressler is the recipient of the Science Achievement Medal from the U.S. Air Force and the Pace-Schwartz Walter Award from the American Ceramic Society. He is a fellow of the American Ceramic Society and a member of the Metal-lurgical Society of the American Institute of Mining, Metal-lurgical, and Petroleum Engineers, the Electrochemical Society, Sigma Xi, and Keramos. Dr. Tressler has also served on five previous National Research Council committees.

DAVID WILSON is a research specialist with 3M and has more than 10 years of research and development experience in the synthesis of new ceramic fibers using sol-gel techniques and is the inventor of the Nextel™ 610 and Nextel™ 720 ceramic fibers. His experience includes the development of novel fiber precursor formulations, continuous fiber processing, and characterization of ceramic fibers at room and elevated temperatures. Current research activities include preceramic polymer-derived SiC fibers and MOCVD coating and composite fabrication for the Mullite Matrix Composite Consortium Program. Mr. Wilson holds four patents and is the author of several publications.

Suggested Citation:"Biographical Sketches of Committee Members." National Research Council. 1998. Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century. Washington, DC: The National Academies Press. doi: 10.17226/6042.
×
Suggested Citation:"Biographical Sketches of Committee Members." National Research Council. 1998. Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century. Washington, DC: The National Academies Press. doi: 10.17226/6042.
×
Page 93
Suggested Citation:"Biographical Sketches of Committee Members." National Research Council. 1998. Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century. Washington, DC: The National Academies Press. doi: 10.17226/6042.
×
Page 94
Suggested Citation:"Biographical Sketches of Committee Members." National Research Council. 1998. Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century. Washington, DC: The National Academies Press. doi: 10.17226/6042.
×
Page 95
Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century Get This Book
×
Buy Paperback | $54.00 Buy Ebook | $43.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

High-temperature ceramic fibers are the key components of ceramic matrix composites (CMCs). Ceramic fiber properties (strength, temperature and creep resistance, for example)-along with the debonding characteristics of their coatings-determine the properties of CMCs. This report outlines the state of the art in high-temperature ceramic fibers and coatings, assesses fibers and coatings in terms of future needs, and recommends promising avenues of research. CMCs are also discussed in this report to provide a context for discussing high-temperature ceramic fibers and coatings.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!