National Academies Press: OpenBook

Nature and Human Society: The Quest for a Sustainable World (1997)

Chapter: 8 Infrastructure for Sustaining Biodiversity-Policy

« Previous: 7 Infrastructure for Sustaining Biodiversity-Society
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 481

PART 8—
INFRASTRUCTURE FOR SUSTAINING BIODIVERSITY—POLICY

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

There was a problem loading page 482.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 483

Linking Science and Policy:
A Research Agenda for Colombian Biodiversity

Cristián Samper
Instituto Alexander von Humboldt, Calle 37 #8–40 Mezanine, Santafe de Bogota, Colombia

The close interaction between nature and human society has been the basis of life for cultures worldwide over many generations. Indigenous tribes, such as the Yukuna living along the Mirití River in the Colombian Amazonia, view their world as the conjunction of all biophysical, biological, and cultural elements. They have a “humanized” view of the forest, in which all the elements are closely connected, and they see themselves as the guardians of the spirits contained in plants, animals, and minerals (van der Hammen 1992).

In recent years, more and more people around the globe have been facing environmental problems as part of everyday life, and many of us have seen changes within our lifetimes. Access to clean water is increasingly difficult, the air in our cities is increasingly polluted, forests are being cut down, and some species are becoming increasingly rare or extinct (WRI 1996). As pressures on natural resources have increased and environmental degradation has become evident, public awareness has increased to an all-time high, and the interdependence of human society and our natural environment is widely accepted.

Environmental issues have become important in local, national, and international agendas, and decision-makers are facing the challenge of designing and implementing policies that achieve an adequate balance between environmental, economic, and social goals. Although much progress has been made in agriculture, transportation, and energy (Dower and others 1997), we are still seeing a steady decline in biological diversity worldwide.

One important reason for the decline is the gap that still exists between scientists and decision-makers. On the one hand, scientists are not providing the

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 484

information that is required for the decision-making process at the right time or in the right language to be useful. On the other, decision-makers at all levels are not necessarily framing questions to scientists or providing the support that is needed to carry out research. In this paper, I describe the attempts made by scientists and decision-makers in Colombia to overcome this problem, and I present a research agenda for the conservation and sustainable use of biodiversity.

The Earth Summit and the Convention on Biological Diversity

In June 1992, leaders of over 100 countries gathered in Rio de Janeiro as part of the UN Conference on Environment and Development (UNCED), also known as the Earth Summit. It was by far the largest gathering of decision-makers from around the world to discuss environmental issues—a clear recognition that these themes do not recognize political boundaries but require international cooperation. The results of the conference include Agenda 21, a global plan to halt and reverse environmental damage to our planet and to promote environmentally sound and sustainable development in all countries (Sitarz 1994). In addition, three legally binding conventions were signed—on biodiversity, climate change, and desertification.

The Convention on Biological Diversity has been ratified by 173 parties and has become a global framework for decision-makers (see Juma, this volume). The convention defines biological diversity as “the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part, this includes diversity within species, between species, and of ecosystems” (UNEP 1994). The convention has three main objectives: the conservation of biological diversity, the sustainable use of its components, and the fair and equitable distribution of benefits derived from its use. The last objective is far-reaching, ambitious, and difficult to achieve, but it is essential for future sustainable development.

The organization of the convention includes the Conference of the Parties (the highest ranking body), in charge of decisions that are legally binding on all parties. It also has a Subsidiary Body for Scientific, Technical, and Technological Advice (SBSTTA), in charge of analyzing relevant information on issues defined by the Conference of the Parties and making recommendations that are then offered for adoption by decision-makers. This scheme is intended to bridge the gap between science and policy, and it has allowed progress to be made on such issues as coastal and marine biodiversity, agricultural biodiversity, and capacity-building for taxonomy.

Many parties to the convention have adopted measures for its implementation on a national level. Colombia has taken steps to implement the convention, and I will examine the measures taken to strengthen scientific research on biodiversity to provide a stronger basis for designing policy and monitoring its effects.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 485

The Biodiversity of Colombia

Colombia is among the countries with the richest biodiversity. With a land area of 1,140,000 km2 (about 0.7% of the continental surface of the globe), it is home to over 40,000 plant species, over 1,815 bird species, over 604 amphibian species—more than 10% of the species of any of these groups.

Colombia's enormous richness can be attributed to its geological history and location. Its location near the equator, as a land bridge between North America and South America, allowed the migration of species between the continents. Many species, such as the oaks (genus Quercus), are widespread in North America, are found in the higher-elevation forests in Central America, and are in forests in the Andes of Colombia as far south as the border with Ecuador.

The geological history of Colombia has also played an important role in speciation and diversification. The oldest rock formations in Colombia are parts of the Guyana shield and are found as giants standing over the plains of the Orinoco and parts of the Amazonian region of Colombia. The Andes are more recent and split into three distinct ranges, with the eastern range stretching as far north as Venezuela. The Pacific coast of Colombia, known as the Chocó, has one of the largest rainfalls—some locations get more than 12,000 mm of rain annually—and is separated from other lowland forests by the Andes. This complex geography gives rise to over 140 biogeographic zones (Jorge Hernandez Camacho, unpublished).

The Institutional Structure in Charge of Colombia's Biodiversity

The environmental sector in Colombia was restructured as a response to the commitments of the Convention on Biological Diversity, ratified by Colombia in 1994. The result is a series of institutions and organizations that are collectively known as the National Environmental System. The highest-ranking body is the National Environmental Council, which is made up of representatives of the different ministries and government agencies and of the private sector, universities, and the civil society. This body is in charge of establishing general policy guidelines and facilitates cross-sectoral coordination.

The restructuring also led to the creation of the Ministry of the Environment, as a small entity in charge of supervising environmental policy and representing Colombian positions in international conventions and treaties related to the environment. Environmental control and management are decentralized in the new system and are in charge of regional autonomous corporations for sustainable development.

Most important for the purpose of this paper are the research institutes that are in charge of providing the scientific and technical support to the environmental system. The institute in charge of biodiversity research, named after Alexander von Humboldt, was established in 1995 as a joint venture of 24 partners, including the Colombian Ministry of the Environment, the Colombian Science Foundation, universities, and nongovernment organizations. This innovative institutional

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 486

approach was designed to bring together the skills and experience of the public and private sectors and to bridge the gap between science and policy. The institute's mission is to promote, coordinate, and carry out research that contributes to the conservation and sustainable use of biological diversity in Colombia.

A Conceptual Framework for Biodiversity Research

The development of a biodiversity research strategy for Colombia requires a conceptual framework. The Convention on Biological Diversity itself has recognized several levels of organization, including genetic diversity, species diversity, and ecosystem diversity. Noss (1990) developed a useful framework to study biodiversity that recognizes those three levels of organization and three attributes that can be surveyed (composition, structure, and function). The result is a two-dimensional matrix that allows any combination of attributes at any level of organization.

In the framework presented by Noss (1990), composition refers to the identification of the components of biological diversity, such as species lists. Structure refers to the characterization of these components, including their relative abundance, for example, the types of ecosystems in a given area. By function, we mean the study of the dynamic nature of biodiversity in space and time, for example, monitoring allele frequency in a population over time or the effects of management practices on demography. It is not surprising that an analysis of biodiversity research over the last few decades shows that most work has been done on composition at the species level and very little on function at the genetic and ecosystem levels.

A helpful addition might be to include the human dimension and to evaluate the use of biodiversity at any level along a gradient of human intervention, from “pristine” habitats, through extractive systems, to highly transformed or even degraded areas. That would enable us to address such matters as the impact of logging on genetic diversity of nontimber forest products or the effects of wetland restoration on ecosystem services.

A Strategic Agenda for Biodiversity Research in Colombia

The strategic plan for research in biodiversity in Colombia is designed to address the conceptual framework as a whole, identify gaps and weaknesses, and design actions to overcome them. The plan, developed in collaboration with 100 institutions and scientists nationwide, has six main objectives:

• to continue the inventory of biological diversity;

• to provide the scientific basis for the conservation of biodiversity;

• to develop new ways to use and value biodiversity;

• to study the effects of cross-sectoral policies and legislation on the conservation and sustainable use of biodiversity;

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 487

• to strengthen the national capacity to carry out scientific research and promote international cooperation; and

• to design ways to disseminate the results of research, especially to decision-makers.

Biodiversity Inventories

Although biological inventories have been carried out for the last 2 centuries, we still have little information on what biodiversity we have and where it is. Most of the biological collecting done since the journeys of Alexander von Humboldt and the botanical expedition led by Jose Celestino Mutis in the early 19th century has focused on vascular plants and vertebrates, especially birds and mammals. Invertebrates, fungi, and bacteria have received little attention, and overall we estimate that we probably know less than 10% of the species found in Colombia (figure 1). Research related to characterization at the genetic level is scarce, except for some species of importance for agriculture and health, although the cost and speed of molecular techniques are making these increasingly available to researchers worldwide.

The Alexander von Humboldt Institute has completed an exercise to determine the high-priority geographic areas for biodiversity inventories through a series of workshops involving leading scientists. The criteria to evaluate geographic priorities include species richness, endemism, current state of knowledge, and degree of threat, including such variables as extent of original habitat left, degree of fragmentation, rate of change, and existence of protected areas. Use of those criteria has led to the identification of areas that have top priority, primarily those with a

image

Figure 1
Estimated percentage of known species in taxonomic groups in Colombia.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 488

combination of high diversity, high endemism, poor knowledge, and high degree of threat. The resulting maps are used to establish a set of geographic priorities that are used by institutions nationwide for inventories (Samper 1997).

In the research plan, the strengthening of biological collections nationwide and the repatriation of information to Colombia are very important. The 29 biological collections in the country house an estimated 1.7 million specimens. However, the collections are not always adequately curated, taxonomic identification is not always reliable, and the information is not readily available for studies in biogeography. Therefore, an important step is to support the exchange of material with national and international specialists and institutions, and a major effort is under way to computerize all collections in Colombia by the year 2000. An additional step is to establish agreements for the repatriation of information housed in museums and other biological collections abroad.

Conservation Biology

A second major line of work is related to research that directly contributes to the conservation of biological diversity at all levels. Research should address the direct causes of extinction, namely, habitat transformation, overexploitation, competition with alien species, and pollution and climate change (Heywood1995).

Research related to conservation should focus on a better understanding of the current status, monitoring, and trends of biological diversity, with emphasis on endangered or threatened taxa or habitats. Preliminary results of this work have resulted in a complete list of threatened plants of Colombia, including 620 species so far, according to the criteria used by the International Union for the Conservation of Nature (UICN 1994). We find that a major group of threatened plants consists of species with restricted geographic distributions and those commonly used by humans. By far the largest percentage of these species are orchids (29%) because of overexploitation for ornamental purposes and transformation of habitats (Calderón 1997). Some plant families that are used for timber are also threatened or endangered.

A recent survey of major ecosystems in Colombia has revealed that nearly onethird of the habitats have been altered or transformed as part of development (Ministerio del Medio Ambiente 1997). The most degraded ecosystems are, not surprisingly, those with the highest population pressures (table 1), such as the Andean cloud forests (26.5% of original cover remaining) and the tropical dry forests of the Caribbean lowlands (1.5% remaining). To conserve natural ecosystems and diversity, Colombia has set aside more than 9 million hectares in 45 protected areas, roughly 8% of the country. Although some ecosystems, such as the Andean and Amazonian forests, are well represented in the national park system, others, such as the Orinoco grasslands, are underrepresented. Furthermore, many of the areas lack the size or latitudinal gradients that would make them viable in the long term. In this context, the Alexander von Humboldt Institute is identifying critical areas for the establishment of new parks or biological corridors and is making recommendations on investment of limited resources to maximize the diversity preserved under in situ conditions.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 489

TABLE 1 Current Status of Major Natural Ecosystem Types in Colombia

Ecosystem Type

Original
Area, km2

Area
Remaining, km2

Fraction Remaining, %

Tropical lowland humid forests

550,000

378,000

68.7

Tropical dry forests

80,000

1,200

1.5

Deserts and xerophytic vegetation

11,000

9,500

86.4

Andean cloud forests

170,000

45,000

26.5

Andean Páramo

18,000

18,000

100.0

Flooding forests (Amazonia)

36,000

36,000

100.0

Orinoco grasslands

113,000

105,000

92.9

Amazonian grasslands

14,000

14,000

100.0

Caribbean grasslands

3,500

1,000

28.6

Amazonian shrublands

7,500

7,500

100.0

Gallery forests

118,000

95,000

80.5

Wetlands

13,000

6,500

50.0

Mangrove forests

6,000

3,500

58.3

Source: Ministerio del Medio Ambiente 1997, based on Etter.

An additional strategy is to conserve components of biodiversity under ex situ conditions, such as germplasm banks and zoological and botanical gardens. The most important ex situ collections held in Colombia are related to genetic diversity of agricultural crops and livestock. The country has 16 registered botanical gardens, but they contain fewer than 5,000 plant species and no more than 5% of the threatened plants of Colombia. A major effort is under way to strengthen the role of botanical gardens in conservation of and research on endangered flora. However, in situ conservation is generally favored in the absence of a complete understanding of diversity and interactions.

One aspect that has received little attention in tropical ecosystems is the effect of alien species and living modified organisms on biodiversity. Research in other countries has shown that introduced species can make up an important fraction of local biodiversity, and in extreme cases, such as the islands of Hawaii, the total number of plants has doubled over the last 2 centuries. Some introduced species can be aggressive and more tolerant to environmental change and can therefore outcompete native species. The effect is especially severe in island and freshwater ecosystems. Over 140 species of freshwater fishes and crustaceans have been introduced into Colombian rivers and wetlands since the turn of the century and might have led to the extinction of several endemic freshwater fish species (Hernando Alvarado, unpublished data).

Use and Valuation of Biodiversity.

Biodiversity has played a major role in the structuring of human populations. That can be clearly seen in the effects of crop and livestock exchange between continents in recent history and their effect on modern cultures (Hobhouse 1985;

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 490

Viola and Margolis 1991). Our livelihood ultimately depends on the direct benefits that we derive from biological diversity (for example, food) and ecosystem services (such as watershed regulation and air control).

Colombia is home to 81 ethnic groups that have interacted closely with their environment and in some ways shaped it over the centuries. The traditional knowledge of components of biodiversity, their ecology, and their natural history and of ways to manage resources is critical to our understanding of biodiversity. This knowledge is being lost at alarming rates, primarily as a result of the changes in cultures as they incorporate elements of western society. Some of the indigenous groups, such as the U'wa in the foothills of the Sierra Nevada del Cocuy and the Arhuacos in the Sierra Nevada de Santa Marta, have developed complex production systems that take into account seasonal variations and migrations along an altitude gradient that stretches from sea level to the timberline at 3,000 m (Franco 1997). Documenting these management practices and promoting the training of younger generations to preserve the knowledge have high priority.

The Convention on Biological Diversity is to some extent addressing a great paradox: the countries with the highest diversity are the ones with the least economic development. Those countries have legitimate interests in using biological diversity for their development in the 21st century, although the short-term economic benefits are often overestimated. It is important to provide a research basis that recognizes the roles of traditional and scientific knowledge. Preliminary results of our work indicate that the total value of goods and services derived from biodiversity in Colombia can be around $300 billion per year, 5 times the GNP (Mansilla and others, in press). Further research is required to determine the value of goods and services from biodiversity and to examine new uses of and markets for products.

Policy and Legislation

Research on biodiversity is too often left to biology and related disciplines, and little room is left for other fields of research. Therefore, a high priority in the research agenda is to strengthen policy research to evaluate the effects of crosssectoral policies on the conservation and sustainable use of biodiversity. One clear example is the agrarian reform policy that was promoted during the 1960s and 1970s in Colombia, where “unproductive” land, defined as land that was not used for agricultural and livestock production, was redistributed to small farmers. The policy served as a disincentive for conservation, and the result was that many areas that had remnants of natural forest ecosystems were cleared to give way to pastures and crops. Not only has the policy been changed to be compatible with conservation of natural ecosystems, but also economic incentives for conservation of forest remnants have been established in recent years.

Another critical component is research on legislation at the international, national, and local levels and its effects on biodiversity goals. International conventions, such as the Convention on Biological Diversity, are increasingly important as we move toward a global economy. It is important to examine the relationship of legislative developments in related conventions, such as the negotiations

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 491

under the Convention on Climate Change, the Food and Agricultural Organization, and the World Trade Organization. On the national level, the 1991 revision of the constitution of Colombia allowed for many environmental issues to be included. Additional developments have been made at the regional level, such as the agreement among the countries of the Andean Community (Venezuela, Colombia, Ecuador, Peru, and Bolivia) for a common regime for access to genetic resources, known as Decision 391 de la Junta del Acuerdo de Cartagena.

Training

It is no secret that the distribution of research capacities is severely unbalanced geographically and that many developing countries need to train scientists in many of the topics and areas described above. That is done in close collaboration with national and international universities, and our goal is to double the number of researchers in biodiversity in Colombia over the next 25 years. Specialized courses, scholarships, and internships will also play a major role in strengthening national capacity.

Communication and Information

One element that is often not considered in designing research programs is related to information management and delivery of the results in a manner that is useful for different audiences. Potential users include decision-makers, other scientists, the communication media, and the general public. Each audience has its own interests, background, and ways to receive information. A helpful exercise is to identify user groups, needs, and means.

The basis of all communication strategies is information, and such issues as database management are critical for research and decisions. Technological advances in hardware, software, and telecommunication are improving the exchange of information in developing countries. A number of initiatives, such as the clearinghouse mechanism of the Convention on Biological Diversity and the InterAmerican Biodiversity Information Network, will strengthen database management and facilitate information exchange.

The results of scientific research on biodiversity are traditionally published by scientists in academic journals, and little effort has been made to deliver these results in other ways that make them readily accessible to decision-makers and the general public. Research on the natural history of plants and animals has served as the basis of an increasing number of documentaries that are featured on television networks around the globe. Strengthening the technical capacity for production and worldwide distribution of documentaries on Colombian biodiversity has high priority.

Conclusion

The actions described in this paper should strengthen capacity to carry out research that is strategically important for the conservation and sustainable use of biodiversity. The institutional developments undertaken in Colombia in response

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 492

to the Convention on Biological Diversity are aimed at bringing together limited resources to address a common agenda and to help bridge the gap between science and policy.

References

Calderón E. 1997. Plantas amenazadas. Boletín Bio No 1. Villa de Leyva Colombia: Instituto Alexander von Humboldt.

Dower R, Ditz D, Faeth P, Johnson N, Kolzoff K, MacKenzie J. 1997. Frontiers of sustainability: environmentally sound agriculture, forestry, transportation, and power production. Covelo CA: World Resources Inst; and Washington DC: Island Pr.

Franco R. 1997. Biodiversidad y sistemas tradicionales de producción en Colombia. Boletín Bio. Villa de Leyva Colombia: Institute Alexander von Humboldt.

Heywood VH. 1995. Global biodiversity asessment. Cambridge UK: Cambridge Univ Pr.

Hobbhouse H. 1985. Seeds of change: five plants that transformed mankind. London UK: Papermac, MacMillan.

Mansilla H, Baptiste LG, Hernandez S, Cárdenas JC, Willis C. In press. La valoración económica de los servicios ambientales de la biodiversidad en Colombia. Villa de Leyva Colombia: Instituto Alexander von Humboldt.

Ministerio del Medio Ambiente. 1997. National biodiversity: policy for Colombia. Villa de Leyva, Colombia: Instituto Alexander von Humboldt.

Noss R. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Cons Biol 4:355–64.

Samper C. 1997. Que tanto conocemos a Colombia? Boletín Bio No 2. Villa de Leyva Colombia: Instituto Alexander von Humboldt.

Sitarz D. 1994. Agenda 21: the Earth summit strategy to save our planet. Boulder CO: EarthPress.

UICN [Unión Internacional para la Conservcación de la Naturaleza]. 1994. Categoriís de las listas rojas de la UICN. Gland, Suiza.

UNEP [United Nations Environment Programme] 1994: Convention on biological diversity. Geneva Switzerland: UNEP.

Van der Hammen MC. 1992. Managing the world: nature and society by the Yukuna of the Colombian Amazonia. Studies of the Colombian Amazonia IV. Bogotá Colombia: Tropenbos Foundation.

Viola HJ, Margolis C. 1991. Seeds of change. Washington DC: Smithsonian Inst Pr.

WRI [World Resources Institute] 1996. World resources 1996–97: a guide to the global development. Washington DC: WRI, UNEP, UNDP  . . . and the World Bank.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 493

Sustainability and the Law:
An assessment of the Endangered Species Act

Michael J. Bean
Environmental Defense Fund, 1875 Connecticut Avenue, NW, Washington, DC 20009

In the United States, the Endangered Species Act (ESA) has served-for the last quarter-century as the final safety net against the loss of biological diversity. During that time, the list of legally protected species, subspecies, and populations has grown steadily, and it now numbers more than 1,200 in the United States. The goals of the ESA are to prevent the extinction of these and to recover them to the point where they are no longer in peril. The tools the act provides to achieve these goals are few: a duty of federal agencies to further the conservation of imperiled species and to avoid actions that jeopardize their continued existence, a prohibition against most commercial activities involving imperiled species, and a prohibition against collecting, killing, or otherwise “taking” them. Thus far, these tools have proved sufficient to arrest the decline of only a minority of imperiled species and to improve the status of an even smaller fraction of those. New and more diverse tools to address more effectively the threats to survival of species clearly are needed. These include positive incentives for private landowners and others to restore, enhance, and responsibly manage habitats for imperiled species; mechanisms to initiate conservation efforts toward species before they reach a point of crisis; and tools to broaden the focus of conservation efforts from individual species to assemblages of species in particular natural communities, habitats, or ecosystems. Recent efforts to fashion such tools administratively have offered promising results.

About 25 years ago, the modern ESA did not exist. Indeed, it had not even been conceived. Representative John Dingell was still 2 months away from introducing the bill that, with important changes, eventually would become the

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 494

ESA. The House passed Dingell's bill in only 8 months, by a margin of 390-12. The Senate's action was even speedier. New Jersey's Senator Harrison Williams introduced his bill on 12 June 1973, and the Senate approved it only 6 weeks later, by a vote of 92-0.

In only 8 months, bills were introduced in both houses, hearings were held, committee reports were written, debate was held, near-unanimous votes occurred, and a presidential signature was obtained on a bill that many regard as one of the most far-reaching and important environmental laws ever passed by any legislature in any nation.

How times have changed: The contrast with the situation today could not be sharper. Gridlock over the future of the ESA has nearly paralyzed Congress for several years. Congress last reauthorized the ESA in 1988 and was supposed to have done so again in 1992. It didn't. Not in 1992, 1993, 1994, 1995, 1996, or 1997, either. Only two of the last four Congresses even managed to report a reauthorization bill out of committee. Neither house has debated a reauthorization bill, although they have tried—with some success—to hamstring the endangered-species program by including budget cuts, narrowly targeted overrides, and moratoriums on listing in unrelated legislation.

The near unanimity of congressional opinion that prevailed in 1973 also has vanished. Congress is divided—deeply—over the future of the ESA. When the ESA has been brought up recently in congressional debate—as in recent debates over creation of a National Biological Survey, imposing a moratorium on adding further species to the endangered list, and exempting certain flood-related activities from the ESA's requirements—the debate has been rancorous, bitter, vitriolic, acerbic, and sometimes downright nasty. These divisions in Congress reflect similar divisions in society at large.

When will Congress get on with the business of reauthorizing the ESA? When it does, what will it do? Unfortunately, no one knows the answers to these questions.

Two things can be said with confidence, however. One is that the ESA has been a huge success. The other is that the ESA has been a huge disappointment.

Let us look at the successes first. When the ESA was passed in 1973, fewer than 50 whooping cranes survived in the wild; today, there are four times as many. The American alligator has recovered fully throughout the Southeast. In less than two decades, the bald eagle has increased its nesting population severalfold and its classification has been changed throughout the nation from endangered to threatened. Brown pelicans and peregrine falcons have increased their numbers and expanded their ranges. Numbers of Kemp's ridley sea turtles are increasing on their nesting beaches in Mexico and appear to be increasing in US coastal waters; in 1997, at least nine Kemp's ridley nests were found on the coast of Texas—apparent evidence that the “head-starting” effort begun here two decades ago may succeed yet. The northern Aplomado falcon once again occurs as a breeding species in the United States after an absence of nearly a half-century.

The list of similarly impressive results continues. Gray wolves have been reintroduced successfully into the northern Rockies, and red wolves into North Carolina. Soon, Mexican wolves are expected to be reintroduced into Arizona

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 495

and possibly New Mexico. And in the Grand Canyon, California condors soar overhead, a sight that has not been seen there in a century or more, and one that few thought would be possible when the last handful of wild condors were taken into captivity a decade or so ago.

As encouraging and reassuring as these successes are, they are counterbalanced by a frustrating lack of success and continued decline of many other species. The ESA was not enough to save two species of fish in Texas, the Amistad and San Marcos gambusias; a bird in Florida, the dusky seaside sparrow; or a fish in Maryland, the Maryland darter. All are now apparently extinct. The Attwater's prairie chicken, although included on the first federal list of endangered species in 1967, has suffered a catastrophic decline, despite three decades of nominal protection, from more than 2,400 wild birds to only 42 in 1997. For the nation as a whole, 33% of the species that the ESA protects are declining.

How does one explain these disappointing results? Many observers offer one or more of the following explanations: the Fish and Wildlife Service does not have enough money, does not have enough backbone, and suffers from too much political meddling. If these are the sources of the problem, then the solutions are easy: give the service more money, stiffen its backbone, and halt the political meddling. It is wise to keep in mind, however, what H.L. Mencken (as quoted in Raspberry 1997) said of easy solutions: “There is always an easy solution to every human problem—neat, plausible, and wrong.” In the case of the ESA, the solutions just enumerated are not so much wrong as they are incomplete. Yes, the service is woefully short of the financial and human resources it needs to do the job that Congress has assigned it. Yes, the Service often shows a remarkable propensity to cave in to pressure. And yes, that propensity to cave in has invited far too much political meddling in congressional administration of the ESA. Yet, although each of these assertions is undoubtedly correct, they do not provide a satisfactory explanation of the disappointments of the ESA.

What is missing from these explanations is the fact that the ESA does not give the Fish and Wildlife Service all the tools that it needs to conserve endangered species, particularly in states like Texas, Florida, and Hawaii, where a great many endangered species occur and where most of the land and most of the habitat that supports those species are privately owned. When dealing with private lands, the ESA gives the service only two tools. One is the authority to tap the Land and Water Conservation Fund to acquire land, and the other is the prohibition in section 9 against the “taking” of endangered species. The service long has interpreted this prohibition to extend to modification of habitat. When the Supreme Court in 1995 upheld that interpretation in the Sweet Home case, most conservationists breathed a sigh of relief.

The “taking” prohibition of section 9 can serve as a powerful hammer. The problem, however, is that many of the causes of decline of endangered species are not nails. Against them, a hammer is ineffectual. Contributing to the decline of most species on the threatened and endangered lists are the absence of natural disturbances like fire, the presence of introduced species, or both. Against these pervasive threats, the prohibition against taking endangered species or their habitats is largely ineffectual. Moreover, the prohibition is ill suited to restoring

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 496

vanished habitats, reconnecting the pieces on a highly fragmented landscape, or countering the random events that drive isolated small populations into extinction. For species too, the world often ends not with a bang, but with a whimper.

After more than two decades, the weaknesses of the ESA are as evident as its strengths. One of its weaknesses is that it has led to a variety of unfortunate and unintended consequences. For example, as long as landowners believe that they will incur added regulatory restrictions on the use of their land if they do things that either attract endangered species or increase the number of such species on it, they are unlikely to do those things. Indeed, to avoid the possibility of such restrictions, landowners sometimes manage their land in ways that render its use by endangered species highly unlikely. That was the clear between-the-lines message of the National Association of Home Builders's recently published Developer's Guide to Endangered Species Regulation (Sauls 1996). In a chapter called “Practical Tips for Developers,” the following frank advice appears:

The highest level of assurance that a property owner will not face an ESA issue is to maintain the property in a condition such that protected species cannot occupy the property. Agricultural farming, denuding of property, and managing vegetation in ways that prevent the presence of such species are often employed in areas where ESA conflicts are known to occur. This is referred to as the “scorched earth” technique. The scorched earth management practice is highly controversial, and its legality may vary depending upon the state or local governing laws. But developers should be aware of it as a means employed in several areas of the country to avoid ESA conflicts.

Such practices are by no means confined to developers. In the Southeast, forestry consultants reportedly often advise owners of pine woodlands to cut their trees before they are old enough to serve as foraging habitat for red-cockaded woodpeckers. In the Northwest, commercial timber companies shorten harvest rotations beyond what otherwise would be economically rational to avoid having northern spotted owls take up residence on their property. In California's central valley, farmers plow fallow fields to prevent native vegetation and endangered species from reoccupying the fields. Sometimes, even the Fish and Wildlife Service finds itself advising landowners to avoid creating habitat for endangered species. Consider the following message I received from an environmentalist in California who had been promoting a habitat-enhancement effort on private land:

Picture this: We are standing in a field, looking at a sediment basin that tends to stay wet part of the year and thus vegetate. The [Fish and Wildlife Service] biologist suggests that we remove vegetation from the basins to avoid creating habitat for and attracting red-legged frogs. Why? you ask. Why indeed; after all, the [service] is supposed to want habitat. The answer to this million-dollar question is that if we attract [threatened and endangered] species, then the [service] would slap some additional constraints on all the projects. So, in an effort to be helpful, [the service encouraged us] to avoid creating habitat. [Sigh]

These examples only demonstrate that the ESA is no exception to the common phenomenon of regulatory programs' spawning ingenious strategies on the part of the regulated parties to frustrate the regulatory purpose without technically

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 497

violating the law. None of these actions violates the ESA, yet all of them virtually ensure that endangered species will not benefit.

This problem was made abundantly clear to me and my colleagues at the Environmental Defense Fund (EDF) while we were working to conserve the redcockaded woodpecker in an area of North Carolina called the Sandhills. The Sandhills supports the second-largest remaining population of red-cockaded woodpeckers in the country; most of them are on Fort Bragg army base, but many are on nearby private lands. The numbers of these woodpeckers on private lands have declined steadily over the last two decades. Much of that decline has resulted from the lack of control of the hardwood understory, a task that Nature formerly performed with regular fires. An extensive system of roads now means that fires caused by lightning strikes will burn only as far as the next road and not cover the thousands of acres that formerly would have burned.

If landowners in the Sandhills would control the hardwood understory aggressively, rehabilitate some of the abandoned nesting cavities where woodpeckers once persisted for decades, install artificial cavities in suitably sized pines, let stands of pines that are nearly old enough to provide foraging habitat remain uncut for a few more decades, and protect those remaining very old trees that could serve as cavity trees, then the bird would be much better off there. The problem was that few landowners in the area could be persuaded to do these things, precisely because they feared the regulatory restrictions that would accompany the woodpeckers that would benefit from these practices. The result was a continuing, steady decline in the local population of woodpeckers, despite their nominal protection as an endangered species.

EDF decided to try something completely different. With generous support from the National Fish and Wildlife Foundation, we devised a new form of habitat-conservation plan. Unlike habitat-conservation plans used elsewhere, this one was intended to create, restore, and enhance habitat for endangered species. No immediate development activity or timber harvest that would result in incidental taking of any endangered species was anticipated. Incidental taking was authorized under this plan, but only in the future, only in those habitats that had been created, restored, or enhanced pursuant to the plan, and only if the participating landowner acknowledged and agreed not to diminish the baseline conditions that existed when he or she enrolled in the plan.

We called this idea “safe harbor”. In return for a definite commitment to carry out specific management actions that were expected to benefit the woodpecker, the landowner was given protection—a safe harbor—from added regulatory restrictions beyond those which already applied to the land on the day he or she entered into the agreement. The aim of the Sandhills safe-harbor program was to accomplish something that no other strategy of the ESA had accomplished there: to halt and reverse the decline of red-cockaded woodpeckers and their habitat on privately owned land. We bet that enough landowners would be willing to beneficially manage enough habitat area for a long-enough period that we could accomplish a substantial improvement in the situation that would exist otherwise.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 498

To date, the safe-harbor program in the North Carolina Sandhills has been received very well by landowners. Two dozen of them now are actively managing 25,000 acres of forest land for the benefit of an endangered species. More important, the benefits of this approach have been recognized by others, who are adapting it to their own circumstances. For example, the Peregrine Fund seized on the safe-harbor idea to expand dramatically a reintroduction effort for the northern Aplomado falcon. Along the Texas coast, coastal prairie habitat is being restored by ranchers and other landowners in a safe-harbor program for the Attwater's prairie chicken. In South Carolina, a statewide safe-harbor program for the redcockaded woodpecker was launched in 1998. Even before it officially began, landowners signaled their intention to enroll some 80,000 acres of forest land in the program.

Safe-harbor agreements are not a panacea. For some species, they can contribute substantial benefits, both to species that have not benefited much from other strategies and to the attitudes of landowners toward the conservation of endangered species. Ultimately, however, what will be needed is a set of meaningful economic incentives to encourage landowners to carry out more broadly the active measures of management that are essential if the goal of recovering endangered species is to be accomplished (Eisner 1995). Cost-sharing programs, tax incentives, and creative contractual programs like those now being tried in Texas can add a new set of tools to the endangered-species toolbox. Without those new tools, the opportunity to reverse the slide toward extinction of many of our plant and animal species will be lost.

It is also necessary to begin directing attention and resources to declining species much earlier. By the time many species receive the nominal protection of the ESA, their numbers are already so reduced that their eventual recovery will be costly, protracted, and difficult, if it can be accomplished at all (Wilcove 1993). Despite the clear need for earlier action, the ESA has discouraged it in some respects. For much the same reason that landowners sometimes seek to manage their land so as not to attract endangered species to it, some landowners also seek to eliminate from their land species that have been identified as likely candidates for future addition to the endangered list. If they act quickly enough, before the government can accomplish the listing, they can avoid any restriction on the use of their land. Ironically, the identification of a species as a possible candidate for future listing can therefore accelerate the very factors that threaten it. To change this unfortunate dynamic, landowners need to be given clear incentives to help prevent species from being listed in the first place. One recently initiated approach is to authorize agreements between the government and landowners under which the landowner commits to do something that reduces threats to the species, in return for which the landowner receives an assurance that his or her obligations toward the species will be fixed for the duration of the agreement by the terms of the agreement. These “candidate-conservation agreements” are only now beginning to be used and offer the potential for a much more salubrious outcome than often has been achieved for declining species.

Finally, as the list of endangered species continues to grow, it has become increasingly clear that we need strategies for conservation that can address the

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 499

needs of multiple species simultaneously. Such strategies can serve a wide array of interests. For the government, such strategies offer a means of more effectively stretching scarce funds for conservation, particularly because of the tendency of endangered species to be concentrated in a relatively few areas (Dobson 1997). For landowners, instead of having to deal seriatim with a steady parade of newly listed species, such strategies can increase certainty and reduce the cost of compliance. For the species themselves, strategies to maintain or restore the habitats and ecological functions necessary for the survival of natural communities likely offer a better hope of lasting success than do strategies that rely on artificial manipulation to sustain a species that is no longer capable of survival on its own. The continuing experience with “natural-community-conservation planning” under the ESA illustrates both the potential for good and the practical difficulty of taking a broader approach. The lessons now being learned from that experience are likely to guide the effort to balance goals of conservation with other societal goals in the coming decades.

References

Dobson AP, Rodriguez JP, Roberts WM, Wilcove DS. 1997. Geographic distribution of endangered species in the United States. Science 275:550–3.

Eisner T, Lubchenco J, Wilson EO, Wilcove DS, Bean MJ. 1995. Building a scientifically sound policy for protecting endangered species. Science 268:1231–2.

Raspberry W. 1997. Neat, plausible—and right on. Quote from HL Menken. The Washington Post. 1Sep97:A21.

Sauls EG. 1996. Practical tips for builders. In: National Association of Home Builders developers guide to endangered species regulation. Washington DC: Home Builder Press. 107–14.

Wilcove DS, McMillan M, Winston, KC. 1993. What exactly is an endangered species? an analysis of the US endangered species list: 1985–1991. Conserv Biol 7:87–93.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 500

Government Policy and Sustainability of Biodiversity in Costa Rica

René Castro
Ministerio del Ambiente y Energía, Piso 10, Calle 25/Av. 8–10, San José, Costa Rica

The year 1948 was a milestone in the consolidation of modern democracy in Costa Rica. A series of historical events took place that year: the breakdown of authoritarianism, the abolition of the army, the creation of mandatory and free education, and the acknowledgment of full citizenship of women and minority-group members and the restoration of all their rights, including the right to vote. Such outstanding events set the stage for the legitimization of equal opportunity as a permanent commitment of the state, and social investment continues to be the essential condition for development. Almost 50 years later and near the end of the millennium, Costa Rica shows significant success.

• In social terms, the average life expectancy is 76 years (3 years more than in the United States), and infant mortality is less than 12 per thousand; the literacy rate is 95%.

• In environmental terms, we have set aside more than 25% of our territory as national and other parks.

• In economic terms, we have achieved such indicators despite a per capita annual income of only $2,700 (although this is low, it is more than two times the regional average). Costa Rica ranks 33rd among nearly 150 nations, according to the human-development index of the United Nations, and ranks 52nd in terms of per capita income.

These outcomes indicate the high level of efficiency of social investment.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 501

Why then Does a Social-Democratic President Request Change?

The inauguration ceremony of the Figueres administration, a forum titled From Forest to Society, gathered together the government ministers and key persons from both Costa Rican society and friendly nations. The president's speech declared, “We have a relatively nice story in development at the end of a decade called the ‘lost decade’. But then the world changed, [and it was] decided to end the Cold War and begin the construction of a global economy, without the permission of small Costa Rica.” The new president continued, “Nowadays, as my country faces the challenge of entering and succeeding in the era of global economy, even with all the progress attained, Costa Rica stands no chance unless we shift our development paradigm to that of sustainable human development. Moving in that direction is not a high-tech decision; it is a policy decision.”

Costa Rica's approach to sustainable human development places equal importance on the simultaneous achievement of the following three objectives:

• To consolidate macroeconomic balances to allow an increase in internal savings and to attract investments.

• To increase possibilities for strategic social investment, which means building the capacity and empowering the people to understand and take advantage of global economic opportunities through good health and adequate education. The Ministry of Public Education has formally included issues of environment and sustainable human development in the school curriculum and has implemented a bioliteracy project: 100% of public high schools will have a computer laboratory facility, and in 1998, 50% of the citizens of the 21st century will be obtaining a bilingual education.

• To construct an alliance with nature: reevaluating existing natural resources; searching for innovative, nondestructive uses; and creating the setting for ground-breaking business opportunities that cause significantly fewer environmental disturbances, all of which can affect the access of future generations to natural resources.

Only at the correct and responsible intersection of those three objectives does development truly become sustainable, and allow us to generate a virtuous circle of increased well-being for our people instead of a vicious circle of endemic underdevelopment.

This paper focuses on the use of our biodiversity, as well as its economic aspects, because it is a reality that an economically poor country cannot give itself the privilege of preserving 25% of its territory without obtaining an economic contribution of at least roughly the average benefits provided by the other land that is used for traditional patterns of production.

In the case of a tropical country like Costa Rica, having set aside a significant portion of the national territory to conserve wildlands has ensured the representation of a high percentage of its biological diversity in the remaining forest. Because of the state's inability to acquire new lands, a new category of private wild

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 502

reserves was created, thus involving the civil society in the management of natural resources. That action gave way to the development of a network of private reserves, which comprises more than 120 reserves and more than 100,000 hectares; the percentage of protected wildlands has increased to nearly 30% of the total area of Costa Rica.

Does a protectionist approach to conservation represent an opportunity cost for the rural communities and the country's development? Discussion about this question helped us see the urgent need to change the financial framework of our conservation areas, and we now intend to implement a process to develop their self-sufficiency. From an economic perspective, protected wildlands should be considered producers of both direct and indirect environmental benefits and services, and these should be appreciated and valued adequately. From this standpoint, we undertook a careful revision of visiting and admission fees.

In the 1980s, the World Wildlife Fund predicted that if the high rates of deforestation in Costa Rica during recent decades continued, its forests would disappear in less than 40 years. Fortunately, the trend that followed has been quite different.

What prevented the prediction from being realized? One reason is that we increased the value of timber and have encouraged cultivation of trees. We also increased the efficiency of deforestation controls and restricted changes in land use forcing landowners to preserve some areas with forest cover. The World Wildlife Fund's prediction provoked a national reaction that led to the development of a plan for reforestation in 1986, an increase in the professional forestry capacity, and the offering of tax incentives and financial support to those who were willing to plant trees. The original instruments of the policy to reduce deforestation were refocused to correct its near-sightedness by eliminating distortions in other sectors' policies that previously had encouraged inadequate uses of land. Those actions implemented the national decision to stop the irreversible damage to biodiversity. Larger and larger sectors of the population organized themselves so that, in the following years, the national reaction was translated into a substantial decrease in the rate of deforestation and an increase in reforested areas, forest regeneration, and secondary growth (500,000 hectares).

During the last decade, we have recognized the economic importance of natural forest environmental services and their contribution to local and global societies. That has changed dramatically the framework of an effective fight against deforestation. One particularly important aspect of the national strategy of sustainable development is the adequate recognition of the benefits and services provided by the forest. Only a few of them are acknowledged in the marketplace; others, equally important, undergo the “tragedy of the commons.” Table 1 summarizes the services provided by Costa Rican forests and identifies the level of beneficiaries.

To preserve the forests and their environmental services and to generate economic benefits to private owners and the whole country, we must make a practical and innovative effort to internalize the costs and benefits, which are recognized in theory but are ignored in practice by the marketplace. Costa Rica has decided to act in a pioneering and creative way, identifying products that can be

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 503

TABLE 1 Services Provided and Beneficiaries of Costa Rican Forests

 

Beneficiaries

Environmental Service

Local

Country

Global

Sustainable wood production

X

   

Watershed protection (water for human
consumption, irrigation, and hydroelectricity)

 

X

 

Scenic value and ecotourism

 

X

 

Biodiversity resources

   

X

Carbon sequestration

   

X

generated and developing markets that can help to reduce the external effects of deforestation and loss of habitats while compensating—directly and tangibly—those who, through adequate land use, maintain the vital life-support functions of the ecosystem and generate benefits to both our society and the world.

Inbio-Merck Contract.

In 1992, the first INBio-Merck contract was approved and carried out successfully. In 1997, a group of major European pharmaceutical companies approached us with interest in creating similar agreements. They expressed surprise that the INBio-Merck contract already had undergone three additional rounds and that the original terms were no longer available. Biodiversity-prospecting agreements have since extended to other applied industries, such as perfume and natural pesticides. Our learning process over the last 5 years has shown us the usefulness of internalizing the benefits derived from our biodiversity resources to our society, which generates additional value to them, each time under improving conditions and benefits of the negotiations.

Watershed Protection and Electric Power

Recently, a hydroelectric-power company based in Costa Rica and a group of rural landowners, supported by local nongovernmental organizations, entered a voluntary private agreement. It guarantees that the company will pay the landowners US$10 per hectare per year for providing protection to the watershed that the hydroelectric company depends on. Similar agreements are under way for other projects because the results have been a substantially improved water level and significantly reduced sedimentation and siltification in the dams. The benefits generated have resulted in minimal effect on consumers and constitute a step toward a win-win situation.

Carbon-Fixation Services

In 1995, we conducted a national inventory of the emission of greenhouse gases to comply with the mandates of the Climatic Change Convention. Article 30 of

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 504

that convention anticipated the possibility of conducting joint activities between countries that are forced to meet reduced levels and countries that are not. We discovered in that article a way to internalize and create markets that repay those forest environmental services that are of global benefit.

A combination of energy-conserving activities (such as the increased use of renewable energy resources, the increased use of public transportation instead of private vehicles, the use of more efficient vehicles and other fuel options, and the planting of trees and protection of natural forests) can contribute to reduce pollution, particularly by carbon dioxide, and reduce the effects of climatic change. The Climatic Change Convention recognizes them as such, and Costa Rica has developed numerous pilot projects in each of those activities.

At the domestic level, the introduction of taxes on fuels and pollution generates more than $20 million a year, which is paid to owners of natural forests for the environmental services they provide to the country, including carbon fixation and watershed protection.

Domestic efforts should be followed by global efforts. In this sense, Costa Rica is taking the first steps in developing the global market. We have implemented activities jointly with several countries and businesses, and eight of 39 projects submitted to the convention's office take place in Costa Rica.

During the implementation stage of the eight projects, we have realized the advantage of having a portfolio of projects to reduce potential risks; lower the costs of designing, monitoring, and certification; and develop a unit capable of combining all these possible projects in the fields of energy and forestry. Thus, in 1996, the first “certified tradable offsets” (CTOs) and the first 200,000 tons of carbon dioxide were sold to the Norwegian government and private sector for $10 per ton. The resulting funds went to 238 landowners to finance reforestation projects.

One alternative use of land is raising cattle, and it is from this alternative use that the cost of the first CTOs was calculated. We needed to provide at least the same $50 per hectare per year that the landowner would have obtained from raising cattle. If the same activity were to take place in the United States (or if it were transformed into energy), the cost per ton would be 5–10 times higher than ours.

The estimated cost of fulfilling the Climatic Change Convention is $400 billion in 20 years to reduce emissions by 20%. The cost for the same effort could decrease to $150 billion if countries that have comparable advantages, such as fast-growth tropical forests, develop joint implementation activities. We suggest that the effort be global and that the savings of more than $250 billion be distributed fairly among all participating countries.

Taking into consideration the different domestic and global efforts, the United Nations State of the Nation Report shows that since 1996 the regeneration of forests, in addition to forest plantations and the increase in private natural forests, helped to meet the national demand for timber. That is, the net level of deforestation is zero. Furthermore, a net increase in rapid-growth forest in urban areas, such as Costa Rica's central valley, means a continued net increase in for-

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 505

est in the last decade from 178,000 to 206,000 hectares, verified through systematic field trips and geographic information systems.

Future Challenges

Is the recovery of our forests sustainable? Is it replicable in other countries? We believe so, but the effort will require both domestic and international actions. For example, domestically, we are developing water tariffs to include the economic and ecological costs associated with the future availability of water and with watershed protection. That will increase prices by 25–40%. We intend to allocate the difference as payments to owners of forest for the costs of environmental services that they incur in watershed-protection activities. In developing a global system of trade for carbon offsets, Costa Rica, in association with the Earth Council, has placed the first 4 million CTOs in the Chicago Stock Exchange, and we are ready to develop the global market.

By adopting similar means, the United States and other developed countries could reduce the costs of complying with the Climatic Change Convention, encourage environmentally sustainable world trade, support rural populations in tropical nations, and save millions of hectares of forest from becoming pasture or other agricultural lands, thus protecting biological diversity and the life-support functions that the forest provides.

Finally, the Climate Change Convention is undergoing negotiations for change. It is time for domestic and global action to save the rain forests. Costa Rica has implemented such projects and policies, and we have proof that success is possible; globally, however, we need to walk the walk as well as talk the talk.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 506

National Security, National Interest, and Sustainability

Thomas E. Lovejoy
Environmentally and Socially Sustainable Development, Latin America & Caribbean Region,
The World Bank, 1818 H Street, NW, Washington, DC 20433 and Room SI 463, Smithsonian Institution, 1000 Jefferson Drive, SW, Washington, DC 20560

Global change is usually thought of—incorrectly—only in terms of physical change and primarily on a planetary scale (for example, climate change and ozone depletion). Often forgotten are local changes that lead to regional and global biodiversity loss—both direct changes (the “green” or conservation issues) and indirect changes (the “brown” or pollution issues) (Patrick 1961, 1962, 1964).

Biodiversity is thus affected by the aggregate of all environmental problems (brown and green) and, as a consequence, represents the global “bottom line”. The loss of biodiversity proceeds in increments that often seem inconsequential, but there is virtual unanimity among scientists that given present trends, the planet is likely to be ravaged biologically with the loss of one-fourth to one-half of all species within a century (Heywood 1995). Most recently, in August 1999, botanists who were assembled in St. Louis, Missouri, for the International Botanical Congress issued a projection of a similar scale.

Given the scale of the problem and the fact that biodiversity is affected by so many other economic and political decisions, to be effective the conservation and scientific communities need to engage the foreign-policy community. If that is successful, it could focus the efforts on root causes and on other foreign-policy issues that affect biodiversity. The foreign-policy community, in turn, should be willing to engage because biodiversity affects its more traditional political and economic concerns and because addressing biodiversity can advance foreign-policy interests.

National security is a term that was interpreted rather narrowly during the Cold War as related primarily to violent interstate conflict. Intrastate conflicts (wars

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 507

of national debilitation) were considered under this militaristic conception of security but were still viewed through the lens of proxy wars in the East-West conflict. National security in this context was related more to immediate bellicosity and the proximate causes of warfare than to underlying causes of a range of conflict not limited to orchestrated violence. Immediately after World War II, national security concerns were interpreted more broadly; economic stability was a centerpiece of the security strategy undergirding the Marshall Plan. With the coming of the Cold War, however, a broader view of national security was shunted aside in favor of the military standoff.

The end of the Cold War brought with it a lively debate over “new” security threats. A number of observers have called for “redefining security” to take into account an array of nonmilitary issues that pose fundamental threats to the health and well-being of populations or their national security. Jessica Mathews (1989), like Lester Brown (1977) and Richard Ullman (1983) before her, drew attention to links between environment and security and called for redefinition of security in her seminal Foreign Affairs article, “Redefining Security”. They stressed the roles that environment and population variables could play, negatively or positively, in contributing to economic and political stability (see also Homer-Dixon 1994; 1999). Beyond the stability concern that still spoke to traditional security considerations, Mathews and others argued for a broadened conception of security that incorporated concern for individuals, society, and even ecosystems as a more meaningful response to post-Cold War threats (Myers 1993).

Some have warned against expanding the definition of national security to the point of meaninglessness (Deudney 1991; Gleditsch 1997; Levy 1995). If it means everything, it means nothing. Others have worried that linking environment and security merely amounts to a rhetorical ploy to grab budgetary resources and in fact presents a real threat that the environment might be militarized rather than security's being greened (Kakönën 1994; Wëver 1995). To avoid those pitfalls, sharp thinking is required to sort out the environmental issues that need to be considered with the highest priority and the ones that do not.

The relationship of biological diversity to the national interest and national security falls into four categories used in foreign-policy analysis: health and well-being of individuals; economic security; conflict, state capacity, and stability; and the role of security institutions. This analysis looks at the subject primarily from a generic viewpoint rather than solely from that of the United States. Another analysis (Westling 1999) appeared as this volume was in press.

Health and Well-Being of Individuals

Foreign-policy analysts are generally concerned about the protection of citizens at home and abroad from harmful effects of war, disease, and famine. Biodiversity loss can lead to disease, mortality, and food-supply problems, but, equally important, biodiversity can contribute to prevention of threats and enhance understanding of how to deal with them.

A well-elaborated contribution to health and well-being of individuals is that of the value of wild species to medicine, including pharmaceutical research (Grifo

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 508

and Rosenthal 1997). This goes beyond the contribution to particular medicines (for example, the antibiotic cyclosporin or birth-control pills from a Mexican yam) to the contribution to research and development in the life sciences (particularly the health sciences). A most dramatic example is an enzyme from the bacterium Thermus aquaticus, originally discovered in a Yellowstone hot spring, which makes the polymerase chain reaction possible. This reaction, the development of which was honored by the Nobel Prize in chemistry in 1993,1 is a rapid magnifying reaction that produces copious copies of genetic material in the space of hours. Among other things, it is fundamental to the Human Genome Project, with all its incalculable promise for human health, and is central in diagnostic medicine and a wide variety of biological research.

Second is the contribution of wild genes to agriculture and animal husbandry, which produce enormous benefits for people. This contribution is potentially greater today because genetic engineering essentially allows a gene to be transferred between any two species rather than only species that can be coaxed to interbreed. The importance of this contribution is evident in light of the need to feed the soaring human population by intensifying agriculture while reducing associated negative environmental affects. However, like any technology, it must be used carefully.

A third contribution of wild species to agriculture is that at the organism level, including pollination and integrated pest management that enhance agricultural production and health and save lives. An example of the latter was the identification, through the Consultative Group for International Agricultural Research, of a parasitic wasp from Paraguay that was the natural predator of the cassava mealy bug then on the verge of creating major famine in West Africa, where neither cassava, the mealy bug, nor the wasp was native (Herren and Neuenschwander 1991). Integrated pest management not only enhances agricultural yields (for example, it prevents billions of dollars of agricultural loss annually in the United States), but also reduces adverse environmental effects of pesticide use.

A fourth contribution of biological diversity to the health and well-being of individuals involves the physical threats stemming from the failure of ecosystem services (Myers 1996). A classic example is the flooding and loss of life in Bangladesh and India from deforestation further up the Ganges watershed in Nepal. The impact of Hurricane Mitch on Central America in 1998 was significantly aggravated by the loss of forest cover. A less well-known example, related to the ozone layer and the protection that it provides against UV radiation, is that a 1% increase in UV radiation causes a 10% increase in the incidence of cataracts; there is very little research on the implications of increased UV radiation for other forms of life and what they might mean for people.

Biological diversity contributes, sometimes directly and sometimes indirectly, to the growth of the life sciences. This goes way beyond medical research itself to involve important but serendipitous medical implications, such as how accidental

1 The 1993 Nobel Prize for chemistry was awarded to Kary B. Mullis for his invention of the polymerase chain reaction (PCR) method.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 509

contamination of a laboratory culture by Penicillium mold led to the discovery of antibiotics. The information that is contained in living organisms of value to the life sciences constitutes the library function of biological diversity and has implications as far afield as bioindustry and industrial ecology.

Economic Security

Governments are naturally concerned about matters that affect the economic condition of their nations and people.

One concern about important national economic resources is the possible loss of monopoly because of international theft. A classic example—although not of actual theft—is the collapse of the Amazon rubber boom after rubber tree seeds were exported by Henry Wickham, an Englishman residing in the lower Amazon; the exported seeds provided the entire basis of the Malaysian rubber industry which supplanted Amazon rubber.

A second category, which might be far less obvious, is the effects of alien species that can cause serious problems when introduced into places where they are not native. Alien species are the second greatest cause of extinction after habitat destruction, but by and large they are not regarded as a security issue or as of great economic import. For example, the loss of the American elm through Dutch elm disease is probably viewed more as an aesthetic consequence than as an economic one. But, the collapse of the lake trout fishery in the Great Lakes because of the introduction of the lamprey and the clogging of the pipes of electric plants by the zebra mussel have clear economic consequences. The comb jelly Mnemiopsis leidyi (transported in ballast water from the Atlantic coastal waters of the New World) has short-circuited the food chain in the Black Sea and is now equal in biomass to the 250-million-dollar-a-year anchovy fishery that it has replaced (Carlton 1996); this clearly is an economic-security issue for the Black Sea nations. Sometimes, the combination of two alien species can create a problem that each alone does not. The zebra mussel accumulates polychlorinated biphenyls (PCBs) through filter feeding in the Great Lakes and could even have been a good bioremediator to clean up that pollutant. The introduction of a species of fish (a goby) that feeds on zebra mussels now opens the possibility that PCBs will work their way once again up the food chain with both human health consequences and economic consequences, including the need to close down the fishery (Jude 1996).

Ecosystem services provided by biological diversity provide a third connection with economic security. The Panama Canal, a strategic economic waterway, requires a freshwater supply if it is both to function as a canal and to provide a biological barrier between the Pacific Ocean and Caribbean Sea biotas. The fresh-water supply, in turn, depends on the forests of the canal watershed. A Smithsonian scientist once calculated that total deforestation of that watershed would result in 3 million cubic meters of sediments entering the canal each year. Another example is the hydrological cycle of the Amazon basin, in which half the rainfall is generated internally largely because of the forest cover. The stability of the Amazon climate, and indeed that of central South America, depends on

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 510

all the Amazon Pact nations' working together to maintain the integrity of that cycle.

A fourth connection between biological diversity and economic security involves physical damage to territory. Biodiversity loss can be both the consequence and the cause of such damage as in Hurricane Mitch in Central America in 1998. Nonetheless, if the more ambitious versions of the Hidrovia waterway project for the Parana Paraguay drainage went forward, the economic consequences could be similar to those engendered by modifications to the southern Florida ecosystem and the Mississippi drainage. The United States is now investing large sums to restore the South Florida ecosystem by reversing the effects of 50 years of independent decisions about water that have reduced sheet flow of water by 25%–50%. There was much greater Mississippi flood damage in 1993 than would otherwise have been the case, because of diking and other projects that altered the natural riverbed.

Another connection between biological diversity and economic security involves the relationships between genetic resources, science, and economic growth. For the United States and other advanced industrial nations, science and technology are essential to maintaining economic growth. Biological science and biotechnology, in particular, are sectors of research and development of major and growing importance. Access to genetic resources—the ability to use and study genetic material in or from other countries—is essential under appropriate rules and with due compensation, of course. Extinction, obviously, represents the ultimate loss of access, because living material no longer exists.

Conflict, State Capacity, and Stability

Top foreign-policy and security concerns include avoidance of unnecessary conflict, coupled with preparedness in case of need, and efforts to maintain stability both outside and inside the state.

A traditional aspect involves the protection of strategic goods, usually thought of in terms of physical resources, such as oil and uranium. There might be instances in which these include genetic resources. From a historical perspective, Southeast Asian rubber is an example of a strategic target for the Japanese in World War II.

A second category would be conflicts arising over resources. There have been spats over fishery issues (involving, for example, Canada, Spain, and the outer continental shelf of North America), but there seem to be no examples of major interstate conflict arising over biological resources. In this context, it is ironic that nations will fight over a square meter of territory and ignore the loss of territory in cubic meters through soil erosion.

Biological resources can relate to defense preparedness. Certainly, access to rubber and quinine were essential to the Allied war effort in World War II, and antibiotics contributed in an important way as well. It is hard to see how biological resources will play as big a role in high-technology wars, except for the dark side of biological warfare. The threat of the latter is far greater than many recognize, and protocols and agreements are generally poorly developed and weak. A

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 511

more interesting contribution of biological diversity might be as a source of intelligence information. The provenance of a Japanese submarine was once identified by algae scraped from its hull and analyzed by Ruth Patrick (personal communication). Many species have quite limited distributions and can therefore serve as useful sources of geographic information. Microbial species that can accumulate radionuclides can be used to assess compliance and noncompliance with nuclear nonproliferation.

A fourth and enormously important connection with biological resources is conflict prevention and confidence-building. Environmental cooperation between two states often leads to broader cooperation on seemingly more difficult issues. The common agenda on the environment between Brazil and the United States is an outstanding example. The water problems of Cyprus might present a first important subject of cooperation between North Cyprus and South Cyprus; certainly, the problem cannot be addressed without both parties. Binational peace parks can play an important role in reducing border tensions; in 1998, a peace park between Ecuador and Peru was a major element in resolving their territorial dispute.

The fifth link of biological resources, namely political tension between countries, is probably likely to be a contributing, rather than a causal, factor. An example would be US and Canadian tensions over the management of Pacific salmon stocks. An example of a causal factor and biodiversity loss as an associated consequence2 was the El Salvador-Honduras soccer war, generally agreed to have been caused by problems with environmental refugees.

The Role of Security Institutions

Security institutions are generally not thought about from an environmental perspective, but biodiversity can have both positive and negative effects. The Department of Defense (DOD) now reviews any “significant military exercise” (a technical DOD term) for possible environmental effects. Although it is hard to see how this could weigh heavily during full war conditions (for example, the US military was not included in the greenhouse gas commitments negotiated under the climate convention at Kyoto, Japan, in 1997), there is substantial military activity during peacetime. DOD now works to conserve biological diversity on its extensive land holdings. Medea, a group of US scientists with security clearances, study data gathered by the US intelligence community3 to see whether they

2For more on the linkages between environmental refugees and conflict, see Homer-Dixon and Percival 1996. In response to the grossly overpopulated and severely degraded land in their native land, Salvadorans had been gradually migrating into their less densely populated neighbor, Honduras. As the land continued to be more degraded and population continued to increase, more Salvadorans were crossing the Honduran border; this led to the Honduran government's expulsion of the migrants. War then broke out between the two countries in 1969.

3 An environmental task force was established in 1992 by the Central Intelligence Agency to assess how crucial environmental issues could be solved through the use of the US national security apparatus. The task force brought together the group of 60 prominent US environmental and global-change scientists, know as MEDEA.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 512

include useful environmental information. An example would be data on possible thinning of the Arctic ice cap as an early indicator of global warming.

Conclusions

Viewing through a traditional political-science lens, one is forced to conclude that environment (under the collective umbrella of biodiversity effects) is more often a contributing factor, with some other aspects of national interest and security, than a causal factor. The weak part of that conclusion is that although biodiversity loss is easy to ignore incrementally, for national interest and security the aggregate can be disastrous. For example, Haiti's major biodiversity loss is caused by almost complete deforestation, and loss and deforestation are clearly not in Haiti's national interest. Given present trends, the loss of biodiversity could also be disastrous on a global scale. The press of everyday problems makes it too easy, in Jessica Mathews's terms, for the urgent to override the important.

Scale and rate of change affect how we should view matters. As this forum met, there were gigantic smoke clouds from extensive fires in the Amazon, as well as the better-known vast fires in Indonesia. Together they mean that more of the world burned in 1997 than ever before in recorded history. That is hard to dismiss as not of high national interest and security concern. As Madeleine Albright has observed, threats to national security are no longer confined to armed threats.4 They also come through the air, water, changing climate, and loss of biological diversity. The positive contributions of biodiversity and ecosystems—present and potential—and the negative effects of loss are so great that they merit much more serious attention. The “important”—the environment and biological diversity—has indeed become urgent.

Acknowledgments.

This paper required my learning about a field basically new to me, namely political science/foreign affairs, including its vocabulary. I am grateful to the Environmental Change and Security Project of the Woodrow Wilson Center for International Scholars for my tutorial, first and foremost to its founding director, P.J. Simmons. His successor, Geoff Dabelko, and Jessica Powers and Aaron Frank were all very helpful. J.P. Myers and Sarah Vogel helped with the information on zebra mussels, gobies, and PCBs. Kathleen Conforti was helpful in countless ways.

References

Brown L. 1977. Redefining security. Worldwatch Pap No 14. Washington DC: Worldwatch Inst.

Carlton JT. 1996. Marine bioinvasions: the alteration of marine ecosystems by nonindigenous species. Oceanography 9:36–43.

4 Remarks at Saint Michael's College, excerpted in the 1998 Environmental Change and Security Project Report.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 513

Deudney D. 1991. Environment and security: muddled thinking. Bull Atom Sci April:23–8.

Gleditsch NP (ed). 1997. Conflict and the environment. Dordrecht: Kluwer.

Grifo F, Joshua R (eds). 1997. Biodiversity and human health. Washington DC: Island Pr.

Herren HR, Neuenschwander P. 1991. Biological control of cassava pests in Africa. Ann Rev Entonol 36:257–83.

Homer-Dixon T. 1999. Environment, scarcity, and violence. 2nd ed. Princeton, NJ: Princeton Univ Pr.

Homer-Dixon TF, Percival V. 1996. Environmental scarcity and violent conflict: briefing book.

Toronto: Univ Toronto, The Project on Environment, Population, and Scarcity.

Homer-Dixon T. 1994. Environmental scarcities and violent conflict: evidence from cases. Int Security 19:5–40.

Jude DJ. 1996. Gobies: cyberfish of the 90's.

Kakönën J (ed). 1994. Green security or militarized environment. Brookfield: Darmouth.

Levy MA. 1995. Is the environment a national security issue? Int Security 20:35–62.

Mathews JT. 1989. Redefining security. For Affairs 68:162–77.

Myers N. 1996. Environmental services of biodiversity. Washington DC: National Acad Pr and Covelo CA: Island Pr.

Myers N. 1993. Ultimate security: the environmental basis of political stability. New York: WW Norton.

Patrick R. 1964. A discussion of natural and abnormal diatom communities. In: Jackson DF (ed). Algae and man. New York: Plenum Pr.

Patrick R. 1961. A study of the numbers and kinds of species found in rivers in eastern United States. Proc Acad Nat Sci Phila: 113:215–58.

Patrick R. 1962. Effects of river physical and chemical characteristics on aquatic life. J Amer Water Works Asso 54:544–50.

Ullman RH. 1983. Redefining security. Int Security 8:129–53.

UNEP [United Nations Environment Programme]. 1995. Global biodiversity assessment. Cambridge: Cambridge Univ Pr. 1140 p.

Westling AH. 1999. Biodiversity loss and its implications for security and armed conflict. In: Cracraft J, Grifo FT (eds). The living planet in crisis: biodiversity, science, and policy. New York: Columbia Univ Pr. p 209–16.

Wëver O. 1995. Securitization and desecuritization. In: Lipschutz RD (ed). On security. New York: Columbia Univ Pr. p 46–86.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 514

Biodiversity and Organizing for Sustainability in the United States Government

Timothy E. Wirth
United Nations Foundation, 1301 Connecticut Avenue NW, Suite 700, Washington, DC 20036

This paper is based on remarks made by Mr. Wirth as Under Secretary of State for Global Affairs at the Conference on Nature and Human Society at the National Academy of Sciences in Washington, DC, on 30 October 1997.

After a decade of discussion on biodiversity through this Second National Forum on Biodiversity, Nature and Human Society: The Quest for A Sustainable World, it might be useful to look ahead. What do we want to have accomplished by the year 2007?

On October 28, 1997, the US stock market fell dramatically, caught in a tailspin that sent global markets reeling. The Hong Kong market stuttered and gasped, and morning television in the United States quoted overnight market changes. Economies all over Southeast Asia stumbled and fell, and the international financial institutions responded with billions of dollars. The news was on the front page everywhere in the world.

Meanwhile, the broadest fires in recent history were blazing in the Amazon, and the smoke from fires in Indonesia had spread over an area greater than that of the lower 48 states of the United States. El Niño was fingered, creating a convenient mask over the forces actually at the root of these crises. Negotiations for The Kyoto Protocol to the Framework Convention on Climate Change (1997) intensified, with greater stakes than any such international conference before. Yet, with few exceptions, those stories were back-page news, when they were covered at all, and certainly no one stepped in with billions of dollars. The contrast was sharp and significant.

Those two sets of events demonstrated the impact of globalization, which is intensifying the relationship between our economies and our environment. Consider the reaction generated when the markets crashed. But did anyone smell the forests burning? Did anyone hear the forests falling? We protect fragile

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 515

economies and prop up failing currencies. But what about fragile ecosystems and failing species?

Certainly, if we are to have any hope of protecting the world's biological richness, we will have to do a much better job of getting people to listen and to understand—to listen to their home, Planet Earth, and to understand the connections between the health of the world's economies and the health of the resources on which those economies rely.

Economists, financiers, businessmen, and bankers will have to begin to recognize the costs hidden in exploiting the seas, the lands, and the air for short-term wealth. They will have to recognize that ecological systems are the very foundation of our society—in science, in agriculture, in social and economic planning. Five essential biological systems—croplands, forests, grasslands, oceans, and fresh-waters—support the world economy. Except for fossil fuels and minerals, they supply all the raw materials for industry and provide all our food:

• Croplands supply food, feed, and an endless array of raw materials for industry, such as fiber and vegetable oils.

• Forests are the source of fuel, lumber, paper, and countless other products and house valuable watersheds that provide drinking water for growing urban areas.

• Grasslands provide meat, milk, leather, and wool.

• Oceans and freshwater produce food for people and resources for industry.

In the language of the business world, you could say that the economy is a wholly owned subsidiary of the environment. But when we pollute, degrade, and irretrievably compromise that ecological capital, we begin to do serious damage to the economy.

With that introduction, let me present a few ideas by focusing on the third Conference on Nature and Human Society, to be held in the year 2007.

Globalization

By 2007, this forum should have a much better understanding of the impacts of globalization. Today, our economists know that we are profoundly remaking international trade and markets. “Globalization and international trade” has become a mantra, almost an ideology, promising a radiant future for us all.

But is there a dark side? Have we looked at other impacts? For example, are globalization and trade between the developed and developing worlds destroying subsistence agriculture? Are we co-opting Third World farmers into production for the international marketplace while their societies are made dependent on imported foods? The social and cultural consequences of this may be very serious.

Earlier this week, we heard that the number of languages spoken around the world has declined from 6,000 to 600 in this century alone. What else are we losing? What crops are gone? What about the knowledge of those crops? What of the indigenous people who carry this knowledge?

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 516

In 2007, we will be asking these questions more openly and aggressively, and the scientific community will have to be prepared to answer them.

Population

If globalization is the first suggestion, certainly population is central as well. In 2007, we will know whether we have dealt with the urgency of the question. It is not a question of what to do, but of openly asking about population pressure. It is not always popular, but it must be done.

The growth of the world's population has slowed, but the base against which that rate applies is greater than ever before. Our planet is populated by the largest generation of youth in human history—and the next generation will be even larger. There are now roughly one billion teenagers in the world—900 million of who are in the developing world.1 Even if average fertility were to fall rapidly to the replacement rate of 2.1, the sheer number of females giving birth over the next several decades will be so large that population will continue to grow rapidly for many years to come. This phenomenon—population momentum—will account for about half of anticipated population growth in the developing world through the year 2100.

At the International Conference on Population and Development, nations of the world agreed—and now must implement—an action plan that endorses a strategy to stabilize population growth by meeting the needs of individuals and addressing the range of factors that influence decisions about family size.

But acting around the world is not enough. We also must focus here at home, with special reference to our own consumption, disproportionate use of resources, and astonishing production of waste.

We must also understand better the concept of carrying capacity—how many of us can the earth sustain, in what lifestyle, and with what expectations? Obviously, population, like globalization, has a profound effect on biodiversity and on the purposes of the Conference on Nature and Human Society.

Persistent Organic Pollutants

Third, I would raise the issue of persistent organic pollutants. At the Department of State, we have begun to explore this issue, and it has become one of our top priorities. We recently hosted an international meeting on land-based sources of marine pollution, and we are starting to focus on how we can affect this important issue.

Theo Colburn, of the World Wildlife Fund, and Diane Dumanowski and Pete Myers, of the W. Alton Jones Foundation, gave us a starting point in this discussion with Our Stolen Future. In 10 years, we will know whether this book is another Silent Spring. I believe that it is and that the research community will be deeply engaged at the next conference. How do toxicants travel? What are the

1 World Population Data Sheet, Population Reference Bureau, 1998.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 517

impacts? Are we poisoning ourselves? What are the implications for reproductive health?

Rethinking Biodiversity

Fourth, we will have gone a long way toward rethinking biodiversity, and perhaps we will be calling it something new. I'm not sure “ecosystem services” is much better. Maybe “nature's services”?

The point is that we have to tell the story better. Why do we preserve snail darters or kangaroo rats? Why do we study nematodes? How does the web of life fit together? And what does it do for the average citizen of the world?

On other issues, we have learned to tell the story:

• When the Cuyahoga River caught on fire, it became the poster event for the environmental movement.

• Asthma caused people to worry about their children and got us the Clean Air Act.

• Lead and learning were linked, and we removed lead from gasoline.

• Lakes were dying, and we understood acid rain and cleaned up our utilities.

• And maybe we will learn about global warming. Is El Niño the trailer for Climate Change the movie?

I predict that the link of nature's services to the science of biodiversity will become the way to tell the story. The links with economics will give us new tools to become loud messengers. And I can guarantee that until we all do a better job of telling the story, the Endangered Species Act will continue to be under attack and the Biodiversity Treaty will remain unratified for want of a two-thirds majority in the Senate.

One of the signal events of the third Conference on Nature and Human Society will be the awarding of a new prize, awarded for science in service to society. Perhaps we will call it the Ed Wilson Prize for Effective Individual Achievement, for the scientist who did the best job in translating his or her discipline to the public. Or the Peter Raven Award for Institutional Relevance, given to the scientific institution that best used its reach to advance public engagement in the preservation of the natural world.

No matter what the name, the point is this: For too long, those public-spirited scientists who sought to take their science outside the laboratory, to the public, to the television audience—or, Heaven forbid, to the political arena—have been punished. To tell the story, to popularize, to explain has somehow been unscientific; it sullied the profession, and those who did it were suspect and unpromotable. It is imperative that we as a society—and individual scientists—do a better job of rewarding those who translate their science, who bring it to the public's attention, and who foster broad public understanding.

My first tutor in thinking about science was Walter Roberts, a wonderful man and founder of the National Center for Atmospheric Science in Boulder. Walter taught me and others about the commitment of science in service to society, and

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×

Page 518

he was right. Science is critical if our global society is going to develop sustainably.

References

Carson R. 1962. Silent spring. Boston MA: Houghton Mifflin.

Colburn T, Dumanowski D, Myers P. 1996. Our stolen future. New York NY: Dutton.

Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 481
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 482
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 483
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 484
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 485
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 486
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 487
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 488
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 489
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 490
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 491
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 492
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 493
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 494
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 495
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 496
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 497
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 498
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 499
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 500
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 501
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 502
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 503
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 504
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 505
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 506
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 507
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 508
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 509
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 510
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 511
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 512
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 513
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 514
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 515
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 516
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 517
Suggested Citation:"8 Infrastructure for Sustaining Biodiversity-Policy." National Academy of Sciences and National Research Council. 1997. Nature and Human Society: The Quest for a Sustainable World. Washington, DC: The National Academies Press. doi: 10.17226/6142.
×
Page 518
Next: 9 Examples of Sustainability »
Nature and Human Society: The Quest for a Sustainable World Get This Book
×
Buy Hardback | $85.00
MyNAP members save 10% online.
Login or Register to save!

From earliest times, human beings have noticed patterns in nature: night and day, tides and lunar cycles, the changing seasons, plant succession, and animal migration. While recognizing patterns conferred great survival advantage, we are now in danger from our own success in multiplying our numbers and altering those patterns for our own purposes.

It is imperative that we engage again with the patterns of nature, but this time, with awareness of our impact as a species. How will burgeoning human populations affect the health of ecosystems? Is loss of species simply a regrettable byproduct of human expansion? Or is the planet passing into a new epoch in just a few human generations?

Nature and Human Society presents a wide-ranging exploration of these and other fundamental questions about our relationship with the environment. This book features findings, insights, and informed speculations from key figures in the field: E.O. Wilson, Thomas Lovejoy, Peter H. Raven, Gretchen Daily, David Suzuki, Norman Myers, Paul Erlich, Michael Bean, and many others.

This volume explores the accelerated extinction of species and what we stand to lose--medicines, energy sources, crop pollination and pest control, the ability of water and soil to renew itself through biological processes, aesthetic and recreational benefits--and how these losses may be felt locally and acutely.

What are the specific threats to biodiversity? The book explores human population growth, the homogenization of biota as a result in tourism and trade, and other factors, including the social influences of law, religious belief, and public education.

Do we have the tools to protect biodiversity? The book looks at molecular genetics, satellite data, tools borrowed from medicine, and other scientific techniques to firm up our grasp of important processes in biology and earth science, including the "new" science of conservation biology.

Nature and Human Society helps us renew our understanding and appreciation for natural patterns, with surprising details about microorganisms, nematodes, and other overlooked forms of life: their numbers, pervasiveness, and importance to the health of the soil, water, and air and to a host of human endeavors.

This book will be of value to anyone who believes that the world's gross natural product is as important as the world's gross national product.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!