National Academies Press: OpenBook

Human Factors in Automated and Robotic Space Systems: Proceedings of a Symposium (1987)

Chapter: Synopsis of General Audience Discussion

« Previous: Discussion: Comments on Telepresence and Supervisory Control
Suggested Citation:"Synopsis of General Audience Discussion." National Research Council. 1987. Human Factors in Automated and Robotic Space Systems: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/792.
×
Page 323
Suggested Citation:"Synopsis of General Audience Discussion." National Research Council. 1987. Human Factors in Automated and Robotic Space Systems: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/792.
×
Page 324
Suggested Citation:"Synopsis of General Audience Discussion." National Research Council. 1987. Human Factors in Automated and Robotic Space Systems: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/792.
×
Page 325
Suggested Citation:"Synopsis of General Audience Discussion." National Research Council. 1987. Human Factors in Automated and Robotic Space Systems: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/792.
×
Page 326

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

SYNOPSIS OF GENERAL AUDIENCE DISCUSSION ~JES1IONS AND ANSWER The first question was focusseJ on a comment, made by Professor Larry Stark, that wide-field-of-view displays are particularly needed An flight simulators. The question was prefaced with the suggestion that this is a limiting technology for anyone who is interested in robotics applications in space, where (a) the location of the observer is likely be maying, and (b) the observer needs to be concerned, not only about the orientation of the object being manipulated, but also about his or her own orientation with respect to some larger coordinate range. It was noted that there are some state-of-the-art wide filed of view displays that cost millions of dollars and proposed that some kind of research to lower the cost of wide-field-of-view displays eight be In order at this point in time. Professor Stark replied that, in this c pinion, wide-field-of-view technology is very important. He provided the following example: When people lose their wide field-of-view (e.g., have tunnel vision due to some neurological disease) they find that they can read and their visual acuity is 20-20; they find, however, that it is hard for them to merely waLk through a doorway because they are lacking a functional flow-field, the lateral and vertical expansion flow-fields, which are directly connected by primitive neurc-path ways to the vestibular system and are coordinated in the foculcus of the cerebellum as shown in some brilliant studies by Jerry Simpson and other neurophysiologists recently; the lateral and vertical expansion flow-fields give us our orientation. On the other hand, when people lose their foveal vision while retaining their flow fields, they are legally blind (with a vision rating of 20/200~; they may not be able to ream, however, they can still walk through rooms, get Who a car, and drive (patients say -"You know, Doctor, I can drive very well, I just can't read the freeway signs, so I don't know when to get off") 323

324 Professor Stark concluded that, when people are doing some tasks (manipulating, inspecting) they need foveae vision. In other race= (moving about within an area) they may need a wide-field-of-view. The human visual system is a *ual system--we have both--and it should be possible to design something (perhaps using inexpensive TV cameras) to provide wide-field-of-view for gross movement tasks, and high resolution (like reading glasses) for manipulation tacks. The second question was directed at Professors Sheridan's comment that there is yet no good way of describing (or representing) the process of manipulation. It was suggested that something like the notation system used by choreographers, to represent complex dance motions, might be useful in this context. Professor Sheridan agreed that "labanotation" (dank- scoring) or nnlci~1 scoring (which is more thoroughly developed), is the kind of thing that ~ ght be useful ~ given a substantial amount of additional develop m£nt. One problem discussed in relation to the use of this type of notation, was the fact that, for a given instrument, the range of manipulations (speed or fingering) is fairly constrained. In t=1eoperations and robotics manipulations, the notation system wed have to be able to cope with continuous geometry, hy~ace, and time. In this type of manipulation, considerations include: multiple degrees of freedom (si~degr~cof freedman for any object, plus maybe the six derivatives, plus He six ac~erations~and that is juice the beginning) and multiple cbjects/~onents in motion (when three or four things are m Wiry In relation to one another you is ~ lately get into a twelve or twen~y-four dimensional space and problems of dealing with trajectory in state-space to describe a manipulation). It is a very big order to develop a notational scheme which is both sufficiently complex, and sufficiently comprehensible, to be useful. Professor Newell noted that the problem of telepresence (generating a feeling, on the part of a remote operator, of "being there" at the work site) is an interesting example of a situation where researchers are working with only a seat-of-the-pants notion of the underlying concepts. He suggested an immense need for a theory an] a plausible mcdel of Presence a theory of what happens to humans (and why) when they project themselves to a remote work site. Professor Sheridan suggested caution in the use of of terms like "project oneself". He noted that it might be possible to project oneself through drugs, or some other method, which would not be particularly helpful in terms of performance. In addition, he suggested that "being in control of" a remote operation might not r ~ a feeling of "being there" that telepresence by itself is not the gab- it is realty performance that makes the difference. These caveats notwithstanding, Professor Sheridan agreed that the develcpment of a cognitive theory of presence would be a highly desirable gang. He suggested that "pieces of it are lying arching (e.g., the work of Murray and others in image rotation, etc.~. Professor Stark suggested that "teleprojection" is a very natural phenomenon. He noted, for example, that when an athlete swings a baseball bat, that he or she as an operator/tooI user is able to "project" kinesthetically and visually to the end of the bat. He

325 pointed out that people automatically develop models for activities that they do on a regular basis (e.g., picking up a pen, using tweezers), and sugg~1 that persons operating remote equipment (e.g., a robotic arm 200 miles away) would develop the same sorts of mcdels--as long as there is some sort of causal relationship between their behaviors and the behavior of the remote system. CONCLUDING REDS An conclusion, one should note that telepresence and supervisory ~ ~ ~~ ~ - ~ needed in control are not mutually exclusive. Telepre~-ce is supervisory control. The supervisory control language, for example, represents only one abstract operator output I.' erface to the remote system. The perceptive element in supervisory control, that is, the information Input to the operator fern the remote system, should be in the form of telepresence "frames" in order to help the operator to determine the necessary abstract commands. We should also note that telepresence has both qualitative and quantitative aspects. The qualitative aspects of telepresence are use fur for stabilizing a control situation. The quantitative aspects of telepresence are not well understood (as indicated by control experiments). For instance, when I am working in a force field, and I have active force feedback to my hand, then I am stable--but I have a poor quantitative perception of the acting forces. However, if I show the values of the acting forces on a display simultaneously with the active force feedback to may hand, then I am stable an] reasonably good quantitatively. m is type of cross medal reference should also be considered On creating telepresence capabilities.

Next: Session VI: Social Factors in Productivity and Performance »
Human Factors in Automated and Robotic Space Systems: Proceedings of a Symposium Get This Book
×
Buy Paperback | $125.00
MyNAP members save 10% online.
Login or Register to save!
  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!