National Academies Press: OpenBook
« Previous: Conclusions and Recommedations
Suggested Citation:"Chapter 8: Communication in the Life Sciences." National Research Council. 1970. The Life Sciences: Recent Progress and Application to Human Affairs The World of Biological Research Requirements for the Future. Washington, DC: The National Academies Press. doi: 10.17226/9575.
×
Page 405
Suggested Citation:"Chapter 8: Communication in the Life Sciences." National Research Council. 1970. The Life Sciences: Recent Progress and Application to Human Affairs The World of Biological Research Requirements for the Future. Washington, DC: The National Academies Press. doi: 10.17226/9575.
×
Page 406

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

CHAPTER EIGHT COMMUNICATION IN THE LIFE SCIENCES In 1866 an Austrian monk named Gregor Mendel published, in an ob- scure periodical, a classic paper reporting his experiments in crossbreeding plants experiments that delineated the basic laws of heredity. Mendel's paper was not just a suggestion; it was a rather convincing quantitative description of the operation of heredity, based on long experimentation and critical analysis. Because Mendel's concepts ran counter to those held by the knowledgeable biologists who were aware of his papers, and because the information channels were inadequate to direct Mendel's work to the attention of other scientists, it lay relatively unknown for almost four decades until its resurrection by Correns, DeVries, and Tschermak, an event that marked the beginning of the full-fledged study of genetics. The in- valuable technique of absorption chromatography, by which rather similar compounds can be separated and purified, is another example of a scientific advance that lay dormant for years, only to be rediscovered later. Although there may be other such instances, the informal communication network now operating markedly decreases the likelihood of major losses of this 405

THE LIFE SCIENCES kind. Such losses, however, could be brought to a minimum by further im- provement of formal, appropriately designed information systems. A modern information system must be designed to preclude the waste of time inherent in discovering the same thing twice, while managing the mushrooming volume of information published in journals both prominent and obscure. Investigators in all fields face the critical challenge of coping with the waves of information that threaten to swamp them, and they in- creasingly recognize their inability to scan all the reports directly related to their work, much less those of tangential interest. Yet only 15 years ago the situation was within bounds. The number and variety of information services ostensibly designed to meet the needs of an increasingly diversified and compartmented clientele of biologists have grown dramatically in the last two decades. The total investment in dollars, trained manpower, and facilities required to imple- ment these services now consumes an important fraction of the total invest- ment in biological research and education. Their rate of growth, their size, and their current level of investment make it desirable to study the cost effectiveness of biological information services. Such evaluation requires an in-depth review and appraisal of both the nature and the objective of these services in relation to the infor- mation requirements of today's biologists. Information-exchange organiza- tions are confronted with an acute need to discern and adapt to the changing information requirements of a scientific community that presently appears to be in a state of flux. Alignment within this community is passing through a period of transition that will probably lead to a rearrangement and amalgamation of scientific disciplines and the structure of their organi- zational concomitants, leading to new information requirements better suited to the objectives of consolidated groupings as they evolve. For example, one can now sense the beginnings of a spontaneous move- ment of the presently polarized factions of molecular biologists and "whole- animal" biologists toward cooperation and integration of their disciplines. The rapprochement of systems-oriented ecologists and ecologically oriented systematists is also much closer to realization. Meanwhile, new orientations to the use of biological understanding for dealing with problems of disease, toxicology, environmental health, pollution, and the general quality of the environment make demands on the information system quite different from those of only a few years ago. Are the current organizational patterns of biological information systems such that they facilitate this reunion of disciplines so urgently required to break new ground? Or, by reason of investments in facilities and equipment and success in achieving their present modes of operation, have they generated a strong interest in preserving the status quo, thus constraining

Next: Special Problems in Handling Biological Information »
The Life Sciences: Recent Progress and Application to Human Affairs The World of Biological Research Requirements for the Future Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!