National Academies Press: OpenBook
« Previous: CHEMICAL AND PHYSICAL PROPERTIES
Suggested Citation:"TOXICOKINETICS." National Research Council. 2000. Submarine Exposure Guidance Levels for Selected Hydrofluorocarbons: HFC-236fa, HFC-23,and HFC-404a. Washington, DC: The National Academies Press. doi: 10.17226/9815.
×
Page 15

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

HYDROFLUOROCARBON-236FA 15 Common name: HFC-236fa Chemical name: 1,1,1,3,3,3-hexafluoropropane Synonyms: Hexafluoropropane; 2,2-Dihydrohexafluoropropane CAS number: 690-39-1 Structural formula: CF3CH2CF3 Description: Colorless gas Molecular weight: 152.01 Boiling point: -0.7°C Melting point: -93.6°C Density and specific gravity: 1.370 g/cc Vapor pressure: 36 psia at 25°C (calculated) Conversion factors: 1 mg/m3= 0.16 ppm; 1 ppm = 6.22 mg/m3 TOXICOKINETICS Using tissues obtained from male rats, Vinegar et al. (1995) determined tissue and air partition coefficients for HCF-236fa by vial equilibration. Coefficients were determined for blood/air, liver/air, fat/air, gut/air, rapidly perfused tissue/air, and slowly perfused tissue/air in incubations of 3 hr at 37°C with 800 parts per million (ppm) of HFC-236fa. The partition coefficients (mean ± standard deviation of 12 determinations) were found to be 0.49 ± 0.04 (blood/air), 0.56 ± 0.06 (liver/air), 3.69 ± 0.56 (fat/air), 0.56 ± 0.06 (gut/air), 0.56 ± 0.06 (rapidly perfused tissues/air), and 0.87 ± 0.08 (slowly perfused tissues/air). Gas-uptake experiments were performed by Vinegar et al. (1995) by exposing three male rats for 6 hr to HFC-236fa via inhalation at concentrations of 100, 530, 2350, 7300, and 18,000 ppm. Loss runs, tests performed without rats to determine the loss rate of HFC-236fa from the chamber, showed percent losses of 0.38% ± 0.07% to 2.85% ± 1.40% per hr, and loss runs with animals in the chamber ranged from 1.57% to 11.77%. For both situations, loss of HFC-236fa from exposure chambers was greatest at lower concentrations. Humidity levels, initially thought to be affecting loss rates, were found to have no appreciable effect on the loss of the test material. The role of carbon dioxide in the inexplicable loss of test material was considered but not investigated. Inhalation uptake of HFC-236fa by rats was

Next: Acute Toxicity »
Submarine Exposure Guidance Levels for Selected Hydrofluorocarbons: HFC-236fa, HFC-23,and HFC-404a Get This Book
×
 Submarine Exposure Guidance Levels for Selected Hydrofluorocarbons: HFC-236fa, HFC-23,and HFC-404a
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

As part of the effort to phase out the use of stratospheric ozone-depleting substances, such as chlorofluorocarbons (CFCs), the U.S. Navy is considering hydrofluorocarbons (HFCs) as replacements for the CFC refrigerants used aboard its submarines. Before using the HFCs, the Navy plans to set emergency exposure guidance levels (EEGLs) and continuous exposure guidance levels (CEGLs) to protect submariners from health effects that could occur as a result of accidental releases or slow leaks.

In this report, the Subcommittee on Exposure Guidance Levels for Selected Hydrofluorocarbons of the National Research Council's (NRC 's) Committee on Toxicology independently reviews the scientific validity of the Navy's proposed 1-hr and 24-hr EEGLs and 90-day CEGLs for two of the candidate refrigerants-HFC-236fa and HFC-404a. In addition, the subcommittee reviews the the EEGLs and CEGL for HFC-23, one of the combustion products of HFC-236fa. This NRC report is intended to aid the Navy in using HFCs safely.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!