
Cost, Effectiveness and Deployment of Fuel Economy 
Technologies for Light-Duty Vehicles

Over the next several decades, increasingly stringent fuel economy and greenhouse gas 
emission standards will come into force, as set out by the National Highway Traffic Safety 
Administration (NHTSA) and the Environmental Protection Agency (EPA).  In response, 
the light-duty vehicle fleet can be expected to undergo substantial technological changes as 
automakers incorporate new powertrain designs, alternative fuels, and advanced materials. 
Cost, Effectiveness and Deployment of Fuel Economy Technologies for Light-Duty Vehicles, 
a study carried out for NHTSA by the National Research Council (NRC), evaluates the costs, 
benefits, and implementation of new light-duty vehicle technologies under NHTSA and 
EPA standards.  The report estimates manufacturing costs and fuel consumption reductions 
for individual technologies, and also discusses safety, manufacturing impacts, consumer 
acceptance and the NHTSA standard setting methodology.

The report finds that by the end of the next decade, new light-duty vehicles will be more fuel 
efficient, lighter, emit less air pollution, safer and more expensive to purchase relative to current 
vehicles. Improvements in gasoline-powered engines will account for the largest reductions in 
fuel consumption through 2025, though alternative powertrains are being implemented in 
an increasing number of models. Evidence suggests that standards based on vehicle footprint 
(wheelbase times track width) will lead the nation’s light-duty vehicle fleet to become lighter 
but not less safe. The NRC judged the NHTSA and EPA analysis in setting the 2017-2025 
MY CAFE/GHG standards to be thorough and of high-caliber overall, however the NRC 
recommends a number of areas the agencies should re-examine during the upcoming mid-term 
review.

Background
NHTSA, together with the EPA, has been 
progressively tightening Corporate Average Fuel 
Economy (CAFE) and greenhouse gas (GHG) 
emission standards.  The new CAFE/GHG standards 
cover model years (MY) 2017-2025 and call for 
an average light-duty vehicle fleet fuel economy 
of 40.3-41.0 miles per gallon (mpg) by 2021 and 
48.7-49.7 mpg by 2025.  Combined with provisions 
for reducing air conditioning emissions and other 
sources of greenhouse gas emissions, light-duty 
vehicles in the U.S. fleet will emit no more than 163 
grams of carbon dioxide (CO2) per mile on average 
by 2025, which is equivalent to 54.5 mpg. 

Recognizing the uncertainties and legal constraints 
in setting standards out to 2025, NHTSA is 
committed to an interim review to judge progress.  
By April 2018, NHSTA and EPA will complete a 
mid-term review of the MY 2022-2025 standards.  
To inform this review, NHTSA requested that the 

National Research Council convene a committee 
of experts to assess the CAFE standards program, 
the Agencies’ analysis underlying the standards, and 
the costs and fuel consumption improvements of 
a variety of light-duty vehicle technologies.  Using 
the committee’s own expertise along with input 
received from NHTSA, EPA, other federal agencies, 
automakers, suppliers, and researchers, the NRC 
developed this independent evaluation.  

Estimated Fuel Consumption 
Reductions and Cost
The report finds the analyses conducted by NHTSA 
and EPA in their development of the 2017-2025 
standards to be thorough and of high caliber.  Full 
vehicle simulation modeling in combination with 
increased vehicle testing has improved the Agencies’ 
estimates of fuel economy impacts, while teardown 
studies have helped provide more accurate cost 
estimates.
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The report committee independently developed estimates 
of the cost and potential fuel consumption reductions 
for new light-duty vehicle technologies that might be 
employed from 2020 to 2030.  The enclosed tables show 
estimates of the most likely fuel consumption benefits and 
direct manufacturing costs for each considered technology 
for year 2025.  These values are not meant to represent 
the full range of possible values for cost and effectiveness, 
but rather the most likely values predicted by committee 
experts for the 2017-2025 time period.  For some 
technologies, committee members held different views on 
the best estimate of cost and effectiveness; these viewpoints 
are represented by a range of values in the tables.  Certain 
technologies are in need of further analysis, including the 
cost and effectiveness of turbocharged, downsized engines 
and the cost and implementation of mass reduction.

Recommendation: While the committee concurred 
with the Agencies’ costs and effectiveness values for a 
wide array of technologies, in some cases the committee 
developed estimates that significantly differed from 
the Agencies’ values, so the committee recommends 
that the Agencies pay particular attention to the 
reanalysis of these technologies in the mid-term review. 
Further, the committee notes that the use of full vehicle 
simulation modeling in combination with lumped 
parameter modeling and teardown studies contributed 
substantially to the value of the Agencies’ estimates 

of fuel consumption and costs, and it recommends 
they continue to increase the use of these methods to 
improve their analysis.    

Spark-Ignition Engines
The spark-ignition (SI) engine fueled with gasoline is by 
far the primary powertrain configuration in the United 
States for light-duty vehicles and will likely continue this 
dominance through the 2025 timeframe and beyond.  The 
Agencies consider substituting turbocharged, downsized 
engines for larger displacement, naturally aspirated engines 
as a major option for reducing fuel consumption to meet 
the standards.  The combined SI engine improvements 
should provide overall fuel consumption reductions close 
to that estimated by NHTSA but with as much as 15 
percent higher direct manufacturing costs for several of the 
technologies.

Recommendation: Since spark-ignition engines are 
expected to be dominant beyond 2025, updated 
effectiveness and cost estimates of the most effective 
spark-ignition engine technologies should be developed 
for the mid-term review of the CAFE standards.  
Updated effectiveness estimates should be derived 
from full system simulations using engine maps based 
on measured data or generated engine model maps 
derived from validated baselines and include models 
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for fuel octane requirements and drivability.  Updated 
cost estimates using teardown cost studies of recently 
introduced spark-ignition engine technologies, 
including all vehicle integration costs, should be 
developed to support the mid-term review.

Compression-Ignition Engines
While the NRC agrees with the Agencies’ fuel consumption 
reduction estimates for compression-ignition (CI) engines 
fueled by diesel, it finds that the current EPA fuel economy 
certification data do not show such large reductions.

Recommendation:  EPA and NHTSA should expand 
their full system simulations supported by mapping 
the latest diesel engines that incorporates as many of 
the latest technologies as possible, as discussed in this 
chapter. EPA and NHTSA should conduct a teardown 
cost study of a modern diesel engine with the latest 
technologies to provide an up-to-date estimate of diesel 
engine costs.  

Hybrid and Electrified Powertrains
Electrification of the powertrain is a powerful method 
to reduce fuel consumption and GHG emissions. The 
NRC generally agrees with the Agencies’ estimates of fuel 
consumption benefits for hybrid electric vehicles (HEVs), 
and battery cost estimates of plug-in electric vehicles 
(PEVs) but has concerns about the regulatory treatment 
of the GHG emissions from the generation of electricity.  
The penetration of HEVs, battery electric vehicles (BEVs), 
and plug-in hybrid electric vehicles (PHEVs) by MY 
2025 will likely be larger than the respective 5%, 0% 
and 2% that the Agencies included in their compliance 
demonstration path.  The NRC also finds that the Agencies 
made critical assumptions that need to be revised about 
the implementation of the P2 HEV design, usable battery 
capacity for some hybrid technologies and non-battery 
costs for PEVs. 

Recommendation: For their mid-term review, the 
Agencies should examine auto manufacturer’s 
experiences of battery life to determine the appropriate 
state of charge swing for PHEVs and BEVs so that they 
can assign costs appropriately. Further, at the time of 
the mid-term review, there will be several vehicles with 
electrified powertrains in the market.  The Agencies 
should commission teardown studies of the most 
successful examples of (1) stop-start, (2) strong hybrids 
(PS, P2, and two motor architectures), (3) PHEV20 
and PHEV40, and (4) BEV100.  At that time there will 
be better estimates of volumes for each type in the 2020 
to 2025 time frame so that a better estimate of cost can 
be calculated. 

Transmissions
The most popular transmission design is the planetary 
automatic transmission (AT), and it is expected to remain 
the dominant architecture in the US in the 2025 timeframe.  
However, continuously variable transmissions (CVTs), 
which provide continuously variable gear ratios to improve 
efficiency, will likely experience higher market penetration 
than assumed in the Agencies’ compliance demonstration 
path and should be examined in the midterm review.

Recommendation:  NHTSA and EPA should add the 
CVT to the list of technologies applicable for the 
2017-2025 CAFE standards. NHTSA and EPA should 
update the analyses of technology penetration rates for 
the midterm review to reflect the anticipated low DCT 
penetration rate in the U.S. market.

Non-Powertrain Technologies
There are many opportunities outside of the vehicle’s 
powertrain to adopt fuel-saving technologies, including 
mass reduction, aerodynamics, tires, vehicle accessories, and 
the rapidly developing area of vehicle automation systems.  
The mass reductions identified in the EPA/NHTSA 
compliance demonstration path are overly conservative for 
midsize and large cars.  Mass reductions across all vehicle 
sizes will likely be greater than what the Agencies estimated 
with proportionately more mass removed from heavier 
vehicles.  

Recommendation:  The committee recommends 
that the Agencies augment their current work with a 
materials-based approach that looks across the fleet to 
better define opportunities and costs for implementing 
lightweighting techniques, especially in the area of 
decompounding. A characterization of current vehicles 
in terms of materials content is a prerequisite for such 
a materials-based approach and for quantifying the 
opportunities to incorporate different lightweighting 
materials in the fleet.

Cost and Manufacturing Considerations
In theory, the report agrees with the Indirect Cost Multiplier 
method used by the Agencies.  However, attribution for 
these indirect costs can be ambiguous, especially for future 
costs, and it was not possible to validate the Agencies’ 
Indirect Cost Multipliers.  Product development for new 
vehicles is accelerating in order to better comply with 
regulations and respond to consumer demands.  However, 
the rapid deployment of new technologies also increases 
stranded capital and incurs higher product deployment 
costs.
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Recommendation: The Agencies should continue 
research on indirect cost multipliers with the goal of 
developing a sound empirical basis for their estimation. 
It also recommends the Agencies continue to conduct 
and review empirical evidence for the cost reductions 
that occur in the automobile industry with volume, 
especially for large volume technologies that will be 
relied on to meet the CAFE/GHG standards.

Consumer Impacts and Acceptance 
Issues
Consumer response to more fuel efficient vehicles is a 
critical element of success for the CAFE/GHG standards.  
Consumers are purchasing fuel-efficient vehicles that meet 
their other wants and needs. There is evidence that most 
consumers will not widely adopt technologies that interfere 
with driver experience, comfort or perceived utility even 
for large improvements in fuel economy.

Recommendation: The committee recommends that the 
Agencies do more research on the existence and extent 
of the energy paradox in fuel economy, the reasons for 
consumers’ undervaluation of fuel economy relative to 
its discounted expected present value, and differences 
in consumers’ perceptions across the population. The 
Agencies should study the value of vehicle attributes 
to consumers, consumer willingness to trade off other 
attributes for fuel economy, and the likelihood of 
consumer adoption of new, unfamiliar technologies 
in the vehicle market.  The Agencies should conduct 
more research on the existence and extent of supply-

side barriers to long-term investments in fuel economy 
technologies.   

Assessment of CAFE Program 
Methodology and Design
The combined CAFE/GHG standards adopted for the MY 
2017-2021 and proposed through 2025 build on earlier 
standards in important ways, including the development 
of combined fuel economy and greenhouse gas emission 
standards, the use of a footprint-based standard and added 
flexibility for manufacturer compliance through credit 
markets.

Recommendation: The Agencies should monitor the 
effects of the CAFE/GHG standards by collecting data 
on fuel efficiency, vehicle footprint, fleet size mix, and 
price of new vehicles to understand the impact of the rules 
on consumers’ choices and manufacturers’ products 
offered. The Agencies, perhaps in collaboration with 
other federal agencies, should conduct an on-going, 
scientifically-designed survey of the real-world fuel 
economy of light-duty vehicles. This information will be 
useful in determining the adequacy of the current test 
cycle and could inform the establishment of improved, 
future (post 2025) test cycles, if necessary. Permanent 
regulatory treatment of alternate-fuel vehicles (AFVs) 
should be commensurate with the well-to-wheels GHG 
and petroleum reduction benefits.
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NRC Estimates

Technologies Midsize Car I4 DOHC Large Car V6 DOHC Large Light Truck V8 OHV Relative
Spark Ignition Engine Technologies Abbreviation Most Likely Most Likely Most Likely To
     NHTSA Technologies
Low Friction Lubricants - Level 1 LUB1 0.7 0.8 0.7 Baseline
Engine Friction Reduction - Level 1 EFR1 2.6 2.7 2.4 Baseline
Low Friction Lubricants and Engine Friction Reduction - Level 2 LUB2_EFR2 1.3 1.4 1.2 Previous Tech
VVT- Intake Cam Phasing (CCP - Coupled Cam Phasing - OHV) ICP 2.6 2.7 2.5 Baseline for DOHC
VVT- Dual Cam Phasing DCP 2.5 2.7 2.4 Previous Tech
Discrete Variable Valve Lift DVVL 3.6 3.9 3.4 Previous Tech
Continuously Variable Valve Lift CVVL 1.0 1.0 0.9 Previous Tech
Cylinder Deactivation DEACD N/A 0.7 5.5 Previous Tech
Variable Valve Actuation (CCP + DVVL) VVA N/A N/A 3.2 Baseline for OHV
Stoichiometric Gasoline Direct Injection SGDI 1.5 1.5 1.5 Previous Tech
Turbocharging and Downsizing Level 1 - 18 bar BMEP 33%DS TRBDS1 7.7 - 8.3 7.3 - 7.8 6.8 - 7.3 Previous Tech
Turbocharging and Downsizing Level 2 - 24 bar BMEP 50%DS TRBDS2 3.2 - 3.5 3.3 - 3.7 3.1 - 3.4 Previous Tech
Cooled EGR Level 1 - 24 bar BMEP, 50% DS CEGR1 3.0 - 3.5 3.1 - 3.5 3.1 - 3.6 Previous Tech
Cooled EGR Level 2 - 27 bar BMEP, 56% DS CEGR2 1.4 1.4 1.2 Previous Tech
     Other Technologies
          By 2025:
Compression Ratio Increase (with regular fuel) CRI-REG 3.0 3.0 3.0 Baseline
Compression Ratio Increase (with higher octane regular fuel) CRI-HO 5.0 5.0 5.0 Baseline
Compression Ratio Increase (CR~13:1, exh. scavenging, DI (aka Skyactiv)) CRI-EXS 10.0 10.0 10.0 Baseline
Electrically Assisted Variable Speed Supercharger 1/ EAVS-SC 26.0 26.0 26.0 Baseline
Lean Burn (with low sulfur fuel) LBRN 5.0 5.0 5.0 Baseline
          After 2025:
Variable Compression Ratio VCR Up to 5.0 Up to 5.0 Up to 5.0 Baseline
D-EGR DEGR 10.0 10.0 10.0 TRBDS1
Homogeneous Charge Compression Ignition (HCCI) + Spark Assisted CI  2/ SA-HCCI Up to 5.0 Up to 5.0 Up to 5.0 TRBDS1
Gasoline Direct Injection Compression Ignition (GDCI) GDCI Up to 5.0 Up to 5.0 Up to 5.0 TRBDS1
Waste Heat Recovery WHR Up to 3.0 Up to 3.0 Up to 3.0 Baseline
          Alternative Fuels*:
CNG-Gasoline Bi-Fuel Vehicle (default UF = 0.5) BCNG Up to 5 Incr [42] Up to 5 Incr [42] Up to 5 Incr [42] Baseline
Flexible Fuel Vehicle (UF dependent, UF = 0.5 thru 2019) FFV 0 [40 thru 2019, 0 [40 thru 2019, 0 [40 thru 2019, Baseline

then UF TBD] then UF TBD] then UF TBD]
Ethanol Boosted Direct Injection (CR = 14:1, 43% downsizing) (UF~0.05) EBDI 20 [24] 20 [24] 20 [24] Baseline

     * Fuel consumption reduction in gge (gasoline gallons equivalent) [CAFE fuel consumption reduction]
     1/ Comparable to TRBDS1, TRBDS2, SS, MHEV, IACC1, IACC2
     2/ With TWC aftertreatment. Costs will increase with lean NOx aftertreatment.

Diesel Engine Technologies
     NHTSA Technologies
Advanced Diesel ADSL 29.4 30.5 29.0 Baseline
     Other Technologies
Low Pressure EGR LPEGR 3.5 3.5 3.5 ADSL
Closed Loop Combustion Control CLCC 2.5 2.5 2.5 ADSL
Injection Pressures Increased to 2,500 to 3,000 bar INJ 2.5 2.5 2.5 ADSL
Downspeeding with Increased Boost Pressure DS 2.5 2.5 2.5 ADSL
Friction Reduction FR 2.5 2.5 2.5 ADSL
Waste Heat Recovery WHR 2.5 2.5 2.5 ADSL

Percent Incremental Fuel Consumption Reductions
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TABLE S.1 (Continued) NRC Committee’s Estimated Fuel Consumption Reduction Effectiveness of Technologies  
 

 

Technologies Midsize Car I4 DOHC Large Car V6 DOHC Large Light Truck V8 OHV Relative
Transmission Technologies Abbreviation Most Likely Most Likely Most Likely To
     NHTSA Technologies
Improved Auto. Trans. Controls/Externals (ASL-1 & Early TC Lockup) IATC 2.5 - 3.0 2.5 - 3.0 2.5 - 3.0 4 sp AT
6-speed AT with Improved Internals - Lepelletier     (Rel to 4 sp AT) NUATO-L 2.0 - 2.5 2.0 - 2.5 2.0 - 2.5 IATC
6-speed AT with Improved Internals - Non-Lepelletier     (Rel to 4 sp AT) NUATO-NL 2.0 - 2.5 2.0 - 2.5 2.0 - 2.5 IATC
6-speed Dry DCT (Rel to 6 sp AT - Lepelletier) 6DCT-D 3.5 - 4.5 3.5 - 4.5 N/A 6 sp AT
6-speed Wet DCT (Rel to 6 sp AT - Lepelletier) (0.5% less than Dry Clutch) 6DCT-W 3.0 - 4.0 3.0 - 4.0 3.0 - 4.0 6 sp AT
8-speed AT (Rel to 6 sp AT - Lepelletier) 8AT 1.5 - 2.0 1.5 - 2.0 1.5 - 2.0 Previous Tech
8-speed DCT     (Rel to 6 sp DCT)    8DCT 1.5 - 2.0 1.5 - 2.0 1.5 - 2.0 Previous Tech
High Efficiency Gearbox Level 1 (Auto) (HETRANS) HEG1 2.3 - 2.7 2.3 - 2.7 2.3 - 2.7 Previous Tech
High Efficiency Gearbox Level 2 (Auto, 2017 and Beyond) HEG2 2.6 - 2.7 2.6 - 2.7 2.6 - 2.7 Previous Tech
Shift Optimizer (ASL-2) SHFTOPT 0.5 - 1.0 0.5 - 1.0 0.5 - 1.0 Previous Tech
Secondary Axle Disconnect SAX 1.4 - 3.0 1.4 - 3.0 1.4 - 3.0 Baseline
     Other Technologies
Continuously Variable Transmission with Improved internals (Rel to 6 sp AT) CVT 3.5 - 4.5 3.5 - 4.5 N/A Previous Tech
High Efficiency Gearbox (CVT) CVT-HEG 3.0 3.0 N/A Previous Tech
High Efficiency Gearbox (DCT) DCT-HEG 2.0 2.0 2.0 Previous Tech
High Efficiency Gearbox Level 3 (Auto, 2020 and beyond) HEG3 1.6 1.6 1.6 Previous Tech
9-10 speed Transmission (Auto, Rel to 8 sp AT) 10SPD 0.3 0.3 0.3 Previous Tech

Electrified Accessories Technologies
     NHTSA Technologies
Electric Power Steering EPS 1.3 1.1 0.8 Baseline
Improved Accessories - Level 1 (70% Eff Alt, Elec. Water Pump and Fan) IACC1 1.2 1.0 1.6 Baseline
Improved Accessories - Level 2 (Mild regen alt strategy, Intelligent cooling) IACC2 2.4 2.6 2.2 Previous Tech

Hybrid Technologies
     NHTSA Technologies
Stop-Start (12V Micro-Hybrid)  (Retain NHTSA Estimates) SS 2.1 2.2 2.1 Baseline
Integrated Starter Generator MHEV 6.5 6.4 3.0 Previous Tech
Strong Hybrid - P2 - Level 2 (Parallel 2 Clutch System) SHEV2-P2 28.9 - 33.6 29.4 - 34.5 26.9 - 30.1 Baseline
Strong Hybrid - PS - Level 2 (Power Split System) SHEV2-PS 33.0 - 33.5 32.0 - 34.1 N/A Baseline
Plug-in Hybrid - 40 mile range PHEV40 N/A N/A N/A Baseline
Electric Vehicle - 75 mile EV75 N/A N/A N/A Baseline
Electric Vehicle - 100 mile EV100 N/A N/A N/a Baseline
Electric Vehicle - 150 mile EV150 N/A N/A N/A Baseline
     Other Technologies
Fuel Cell Electric Vehicle FCEV N/A N/A N/A Baseline
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TABLE S.1 (Continued) NRC Committee’s Estimated Fuel Consumption Reduction Effectiveness of Technologies  
 

 
 
 

Technologies Midsize Car I4 DOHC Large Car V6 DOHC Large Light Truck V8 OHV Relative
Vehicle Technologies Abbreviation Most Likely Most Likely Most Likely To
     NHTSA Technologies
         Without Engine Downsizing 3/
0 - 2.5% Mass Reduction (Design Optimization) MR2.5 0.80 0.80 0.85 Baseline
     2.5 - 5% Mass Reduction 0.81 0.81 0.85 Previous MR
0 - 5% Mass Reduction (Material Substitution) MR5 1.60 1.60 1.69 Baseline
     With Engine Downsizing (Same Architecture) 3/
     5 - 10% Mass Reduction 4.57 4.57 2.85 Previous MR
0 - 10% Mass Reduction (HSLA Steel and Aluminum Closures) MR10 6.10 6.10 4.49 Baseline

     10 - 15% Mass Reduction (Aluminum Body) 3.25 3.25 2.35 Previous MR
0 - 15% Mass Reduction (Aluminum Body) MR15 9.15 9.15 6.73 Baseline
     15 - 20% Mass Reduction 3.37 3.37 2.41 Previous MR
0 - 20% Mass Reduction (Aluminum Body, Magnesium, Composites) MR20 12.21 12.21 8.98 Baseline
     20 - 25% Mass Reduction 3.47 3.47 2.46 Previous MR
0 - 25% Mass Reduction (Carbon Fiber Composite Body) MR25 15.26 15.26 11.22 Baseline

     Summary - Mass Reduction Relative to Baseline
0 - 2.5% Mass Reduction MR2.5 0.80 0.80 0.85 Baseline
0 - 5%   Mass Reduction MR5 1.60 1.60 1.69 Baseline
0 - 10% Mass Reduction MR10 6.10 6.10 4.49 Baseline
0 - 15% Mass Reduction MR15 9.15 9.15 6.73 Baseline
0 - 20% Mass Reduction MR20 12.21 12.21 8.98 Baseline
0 - 25% Mass Reduction MR25 15.26 15.26 11.22 Baseline

Low Rolling Resistance Tires - Level 1 (10% Reduction) ROLL1 1.9 1.9 1.9 Baseline
Low Rolling Resistance Tires - Level 2 (20% Reduction) ROLL2 2.0 2.0 2.0 Previous Tech
Low Drag Brakes LDB 0.8 0.8 0.8 Baseline
Aerodynamic Drag Reduction - Level 1 (10% Reduction) AERO1 2.3 2.3 2.3 Baseline
Aerodynamic Drag Reduction - Level 2 (20% Reduction) AERO2 2.5 2.5 2.5 Previous Tech

3/ FC Reductions - Ricardo 2007
Car:
     Without engine downsizing: +3.3% mpg/10% MR = -3.2% FC/10% MR
     With engine downsizing (for MR > 10%): +6.5% mpg/10%MR = -6.1% FC/10% MR  
Truck
     Without engine downsizing: +3.5% mpg/10% MR = -3.4% FC/10% MR
     With engine downsizing (for MR > 10%): +4.7% mpg/10%MR = 4.5% FC/10% MR 

Midsize Car:  3500 lbs
Large Car:  4500 lbs
Large Light Truck:  5500 lbs

4/29/2015  



TABLE S.2  NRC Committee’s Estimated 2025 MY Direct Manufacturing Costs of Technologies 
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2025 MY Incremental Direct Manufacturing Costs (2010$)
NRC Estimates

Technologies Midsize Car I4 DOHC Large Car V6 DOHC Large Light Truck V8 OHV Relative
Spark Ignition Engine Technologies Abbreviation Most Likely Most Likely Most Likely To
     NHTSA Technologies
Low Friction Lubricants - Level 1 LUB1 3 3 3 Baseline
Engine Friction Reduction - Level 1 EFR1 48 71 95 Baseline
Low Friction Lubricants and Engine Friction Reduction - Level 2 LUB2_EFR2 51 75 99 Previous Tech
VVT- Intake Cam Phasing (CCP - Coupled Cam Phasing - OHV) ICP 31 - 36 63 - 73 31 - 36 Baseline for DOHC
VVT- Dual Cam Phasing DCP 27 - 31 61 - 69 31 - 36 Previous Tech
Discrete Variable Valve Lift DVVL 99 - 114 143 - 164 N/A Previous Tech
Continuously Variable Valve Lift CVVL 49 - 56 128 - 147 N/A Previous Tech
Cylinder Deactivation DEACD N/A 118 133 Previous Tech
Variable Valve Actuation (CCP + DVVL) VVA N/A N/A 235 - 271 Baseline for OHV
Stoichiometric Gasoline Direct Injection SGDI 164 246 296 Previous Tech
Turbocharging and Downsizing Level 1 - 18 bar BMEP 33%DS TRBDS1 245 - 282 -110 to -73 788 - 862 Previous Tech
     V6 to I4 and V8 to V6 -396* to -316* 700* - 800*
Turbocharging and Downsizing Level 2 - 24 bar BMEP 50%DS TRBDS2 155 155 261 Previous Tech
     I4 to I3 -82* to -86*
Cooled EGR Level 1 - 24 bar BMEP, 50% DS CEGR1 180 180 180 Previous Tech
Cooled EGR Level 2 - 27 bar BMEP, 56% DS CEGR2 310 310 523 Previous Tech
     V6 to I4 -453* to -469*
     Other Technologies
          By 2025:
Compression Ratio Increase (with regular fuel) CRI-REG 50 75 100 Baseline
Compression Ratio Increase (with higher octane regular fuel) CRI-HO 75 113 150 Baseline
Compression Ratio Increase (CR~13:1, exh. scavenging, DI (aka Skyactiv)) CRI-EXS 250 375 500 Baseline
Electrically Assisted Variable Speed Supercharger EAVS-SC 1,302 998 N/A Baseline
Lean Burn (with low sulfur fuel) LBRN 800 920 1,040 Baseline
          After 2025:
Variable Compression Ratio VCR 597 687 896 Baseline
D-EGR DEGR 667 667 667 TRBDS1
Homogeneous Charge Compression Ignition (HCCI) + Spark Assisted CI  1/ SA-HCCI 450 500 550 TRBDS1
Gasoline Direct Injection Compression Ignition GDCI 2,500 2,875 3,750 Baseline
Waste Heat Recovery WHR 700 805 1,050 Baseline
          Alternative Fuels:
CNG-Gasoline Bi-Fuel Vehicle BCNG 6,000 6,900 7,800 Baseline
Flexible Fuel Vehicle FFV 75 100 125 Baseline
Ethanol Boosted Direct Injection (incr CR to 14:1, 43% downsizing) EBDI 740 870 1,000 Baseline

     * Costs with reduced number of cylinders, adjusted for previously added technologies.  See Appendix T for the derivation of turbocharged, downsized engine costs.
     1/ With TWC aftertreatment. Costs will increase with lean NOx aftertreatment.

Diesel Engine Technologies
     NHTSA Technologies
Advanced Diesel ADSL 2,572 3,034 3,228 Baseline
     Other Technologies
Low Pressure EGR LPEGR 113 141 141 ADSL
Closed Loop Combustion Control CLCC 58 87 87 ADSL
Injection Pressures Increased to 2,500 to 3,000 bar INJ 20 22 22 ADSL
Downspeeding with Increased Boost Pressure DS 24 24 24 ADSL
Friction Reduction FR 54 82 82 ADSL
Waste Heat Recovery WHR 700 805 1,050 ADSL
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TABLE S.2 (Continued) NRC Committee’s Estimated 2025 Direct Manufacturing Costs of Technologies  
 

 

Technologies Midsize Car I4 DOHC Large Car V6 DOHC Large Light Truck V8 OHV Relative
Transmission Technologies Abbreviation Most Likely Most Likely Most Likely To
     NHTSA Technologies
Improved Auto. Trans. Controls/Externals (ASL-1 & Early TC Lockup) IATC 42 42 42 Baseline 4 sp AT
6-speed AT with Improved Internals - Lepelletier     (Rel to 4 sp AT) NUATO-L -11 -11 -11 IATC
6-speed AT with Improved Internals - Non-Lepelletier     (Rel to 4 sp AT) NUATO-NL 165 165 165 IATC
6-speed Dry DCT (Rel to 6 sp AT - Lepelletier) 6DCT-D -127 to 26 -127 to 26 N/A 6 sp AT
6-speed Wet DCT (Rel to 6 sp AT - Lepelletier) 6DCT-W -75 to 75 -75 to 75 -75 to 75 6 sp AT
8-speed AT (Rel to 6 sp AT - Lepelletier) 8AT 47 - 115 47 - 115 47 - 115 Previous Tech
8-speed DCT     (Rel to 6 sp DCT)    8DCT 152 152 152 Previous Tech
High Efficiency Gearbox Level 1 (Auto) (HETRANS) HEG1 102 102 102 Previous Tech
High Efficiency Gearbox Level 2 (Auto, 2017 and Beyond) HEG2 165 165 165 Previous Tech
Shift Optimizer (ASL-2) SHFTOPT 22 22 22 Previous Tech
Secondary Axle Disconnect SAX 86 86 86 Baseline
     Other Technologies
Continuously Variable Transmission with Improved internals (Rel to 6 sp AT) CVT 154 154 NA Baseline
High Efficiency Gearbox (CVT) CVT-HEG 107 107 NA Baseline
High Efficiency Gearbox (DCT) DCT-HEG 127 127 127 Baseline
High Efficiency Gearbox Level 3 (Auto, 2020 and beyond) HEG3 128 128 128 Baseline
9-10 speed Transmission (Auto, Rel to 8 sp AT) 10SPD 65 65 65 Baseline

Electrified Accessories Technologies
     NHTSA Technologies
Electric Power Steering EPS 74 74 74 Baseline
Improved Accessories - Level 1 (70% Eff Alt, Elec. Water Pump and Fan) IACC1 60 60 60 Baseline
Improved Accessories - Level 2 (Mild regen alt strategy, Intelligent cooling) IACC2 37 37 37 Previous Tech

Hybrid Technologies
     NHTSA Technologies
Stop-Start (12V Micro-Hybrid) SS 225 - 275 255 - 305 279 - 329 Baseline
Integrated Starter Generator MHEV 888 - 1,018 888 - 1,115 888 - 1,164 Previous Tech
Strong Hybrid - P2 - Level 2 (Parallel 2 Clutch System) SHEV2-P2 2,041 - 2,588 2,410 - 3,086 2,438 - 3,111 Baseline
Strong Hybrid - PS - Level 2 (Power Split System) SHEV2-PS 2,671 2,889 N/A Baseline
Plug-in Hybrid - 40 mile range PHEV40 8,236 - 9,672 11,083 - 13,135 N/A Baseline
Electric Vehicle - 75 mile EV75 8,451 - 8,963 11,025 - 11,929 N/A Baseline
Electric Vehicle - 100 mile EV100 9,486 11,971 N/A Baseline
Electric Vehicle - 150 mile EV150 12,264 14,567 N/A Baseline
     Other Technologies
Fuel Cell Electric Vehicle FCEV N/A N/A N/A
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TABLE S.2 (Continued) NRC Committee’s Estimated 2025 Direct Manufacturing Costs of Technologies  
 

 

Technologies Midsize Car I4 DOHC Large Car V6 DOHC Large Light Truck V8 OHV Relative
Vehicle Technologies Abbreviation Most Likely Most Likely Most Likely To
     NHTSA Technologies
         Without Engine Downsizing
0 - 2.5% Mass Reduction (Design Optimization) MR2.5 0 - 22 0 - 28 0 - 39 Baseline
     2.5 - 5% Mass Reduction 0 - 66 0 - 85 0 - 112 Previous MR
0 - 5% Mass Reduction (Material Substitution) MR5 0 - 88 0 - 113 0 - 151 Baseline
     With Engine Downsizing (Same Architecture) 3/
     5 - 10% Mass Reduction 151 - 315 194 - 405 264 - 558 Previous MR
0 - 10% Mass Reduction (HSLA Steel and Aluminum Closures) MR10 151 - 403 194 - 518 264 - 710 Baseline

     10 - 15% Mass Reduction (Aluminum Body) 431 - 730 554 - 938 751 - 1,279 Baseline
0 - 15% Mass Reduction (Aluminum Body) MR15 431 - 730 554 - 938 751 - 1,279 Baseline
     15 - 20% Mass Reduction 486 - 600 626 - 772 866 - 1,064 Previous MR
0 - 20% Mass Reduction (Aluminum Body, Magnesium, Composites) MR20 917 - 1,330 1,179 - 1,710 1,617 - 2,343 Baseline
     20 - 25% Mass Reduction 1,026 - 1,260 1,319 - 1,620 1,807 - 1,947 Previous MR
0 - 25% Mass Reduction (Carbon Fiber Composite Body) MR25 1,943 - 2,590 2,498 - 3,330 3,424 - 4,290 Baseline

Mass Reduction Cost ($ per lb.) 
0 - 2.5% Mass Reduction MR2.5 0.00 - 0 .25 0.00 - 0 .25 0.00 - 0.28 Baseline
0 - 5%   Mass Reduction MR5 0.00 - 0.49 0.00 - 0.49 0.00 - 0.55 Baseline
0 - 10% Mass Reduction MR10 0.43 - 1.15 0.43 - 1.15 0.48 - 1.29 Baseline
0 - 15% Mass Reduction MR15 0.82 - 1.39 0.82 - 1.39 0.91 - 1.55 Baseline
0 - 20% Mass Reduction MR20 1.31 - 1.90 1.31 - 1.90 1.47 - 2.13 Baseline
0 - 25% Mass Reduction MR25 2.22 - 2.96 2.22 - 2.96 2.49 - 3.12 Baseline

Low Rolling Resistance Tires - Level 1 (10% reduction in rolling resistance) ROLL1 5 5 5 Baseline
Low Rolling Resistance Tires - Level 2 (20% reduction in rolling resistance) ROLL2 31 31 31 Previous Tech
Low Drag Brakes LDB 59 59 59 Baseline
Aerodynamic Drag Reduction - Level 1 AERO1 33 33 33 Baseline
Aerodynamic Drag Reduction - Level 2 AERO2 100 100 100 Previous Tech

3/ Includes mass decompounding: 40% for cars, 25% for trucks

Midsize Car:  3500 lbs
Large Car:  4500 lbs
Large Light Truck:  5500 lbs

4/29/2015  
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