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1 Introduction

The scope of this report is to highlight best practices that apply to research broadly, and spe-
cific areas of research that are particularly problematic. We will focus on tools and approaches
for achieving measurement assurance, confidence in data and results, and the facility for shar-
ing data.

The general nature of the problem. Concern about reproducibility of research results seems
to be widespread across disciplines. Scientists, funding agencies and private and corporate do-
nors, industrial researchers, and policymakers have decried a lack of reproducibility in many
areas of scientific research, including computation [1], forensics [2], epidemiology [3], and psy-
chology [4]. Failure to reproduce published results has been reported by researchers in
chemistry, biology, physics and engineering, medicine, and earth and environmental sciences
[5]. From the point of view of a national metrology institute, confidence in results from all
fields of study are equally important and should be addressed thoroughly and systematically.

Reproducibility, Uncertainty, and Confidence

The role of reproducibility. Here we consider what reproducibility means from a measurement
science point of view, and what the appropriate role of reproducibility is in assessing the quality
of research. Measurement science considers reproducibility to be one of many factors that
qualify research results. A systematic examination of the various components of rigorous re-
search may provide an alternative to a limited focus on reproducibility.

Relevant definitions. The dictionary definition of the term uncertainty refers to the condition
of being uncertain (unsure, doubtful, not possessing complete knowledge). It is a subjective
condition because it pertains to the perception or understanding that one has about the value
of some property of an object of interest. In measurement science, measurement uncertainty is
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defined as the doubt about the true value of a particular quantity subject to measurement (the
“measurand”), and quantifying this uncertainty is fundamental to precision measurements [6].

The International Vocabulary of Metrology[7] is commonly used by the international metrology
community and provides definitions for many terms of interest to the issue of “reproducibility”.
While the term has become something of a catch-phrase, “reproducibility” has a precise defini-

Term Definition Notes
Reproducibility Precision in measurements under conditions | A specification should give the
that may involve different locations, opera- | conditions changed and un-
tors, measuring systems, and replicate changed, to the extent practical.

measurements on the same or similar ob-
jects. The different measuring systems may
use different measurement procedures.
Repeatability Precision in measurements under conditions
that include the same measurement proce-
dure, same operators, same measuring
system, same operating conditions and
same location, and replicate measurements
on the same or similar objects over a short
period of time.

Precision Closeness of agreement between measured | Usually expressed as standard de-
quantities obtained by replicate measure- viation, variance or coefficient of
ments on the same or similar objects under | variation.

conditions of repeatability or reproducibility.
Accuracy Closeness of agreement between a meas-
ured quantity value and a true quantity
value of a measurand.

Table 1. Some relevant terms and definitions that are consistent with the International Vocabulary of
Metrology (VIM 2015). ‘Replicability’, a term that is often used in conjunction with ‘Reproducibility’, is not
defined in the VIM.

tion in measurement science. Table 1 lists a few of the terms in the VIM that describe the
various aspects of a measurement process that relate to our discussion here.

There are many other sources of definitions in this space (e.g., [8]), but we point to the VIM be-
cause these definitions arise from measurement science, and have been developed over the
course of decades through consensus by a large international community.

Reproducibility and the desire for confidence in research results. In addition to the occur-
rence of competing definitions associated with reproducibility, there are many caveats
associated with the responses to the concern about reproducibility. Funding agencies, scientific
journals, and private organizations have instituted checklists, requirements, and guidelines [9],
[10], [11]. There have been a number of sponsored activities focused on demonstrating the re-
producibility of previously published studies by other laboratories [12], [13]. Checklists have
met with some resistance [14]. Some of the criticisms cited include the “one size fits all” nature
of the guidelines, that some of the criteria are inappropriate for exploratory studies, that the
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guidelines are burdensome to authors and reviewers, and that the emphasis on guidelines
shifts the responsibility for scientific quality from scientists themselves to the journals. There
are further concerns from funders and editors that they need to assume a policing role. Criti-
cisms of the focus on reproducing results in independent labs cite the implicit assumption that
only reproducible results are correct, and if a result is not reproducible it must be wrong [15],
or worse, fraudulent. From a practical point of view, the effort to reproduce published studies
can be prohibitively expensive and time consuming [16]. There are no easy answers for how to
determine when the result of a complex study is sufficiently reproduced. It is not clear how to
interpret the failure of an independent lab to reproduce another lab’s results. “Who checks the
checkers?” was a highly relevant question asked during an American Society for Cell Biology
panel discussion on reproducibility. Metrology laboratories spend significant effort in measure-
ment comparisons, establishing consensus values, using reference materials, and determining
confidence limits. This work is especially challenging when the measurements themselves are
complicated or the measurand is poorly defined.

The complexities associated with interlaboratory reproducibility can be great, and when per-
formed by metrology experts, interlaboratory studies follow a formal and systematic approach.
There is no doubt that demonstrating reproducibility of a result instills confidence in that result.
But results can be reproduced and still be inaccurate (recall the many rapid confirmations of
cold fusion, all of which turned out to be erroneous; see, for example [17]), suggesting that re-
producibility is not a sufficient indictor of confidence in a result. Mere reproducibility is
insufficient to guarantee that a result of scientific inquiry indeed tracks the truth [18]. In addi-
tion, a failure to reproduce is often just the beginning of scientific discovery, and it may not be
an indication that that any result is “right” or “wrong”. Particularly in the case of complicated
experiments, it is likely that different results are observed because different experiments are
being conducted unintentionally. Without a clear understanding of what should be “reproduci-
ble”, and what variation in results is reasonable to expect, and what the potential sources of
uncertainty are, it is easy to devote considerable resources to an unproductive goal.

An alternative to focusing on reproducibility as a measure of reliability is to examine a research
result from the perspective of one’s confidence in the components of the study, by acknowl-
edging and addressing sources of uncertainty in a research study. Thompson [19] goes further,
suggesting that research methods should be reviewed and accredited as a prerequisite for pub-
lication of research in journals. Uncertainty in measurement and transparency of research
methods are unifying principles of measurement science and the national metrology institutes.

The International Conventions of Metrology

Uncertainty in measurement is a unifying principle of measurement science and the national
metrology institutes. The National Institute of Standards and Technology (NIST), which is the
national metrology institute (NMI) of the United States, and its one hundred-plus sister labora-
tories in other countries quantify uncertainties as a way of qualifying measurements. This
practice guarantees the intercomparability of measurement results worldwide, within the
framework maintained by the International Bureau of Weights and Measures (Bureau Interna-
tional des Poids et Mesures, BIPM). These international efforts that underlie the
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intercomparability of measurement results in science, technology, and commerce and trade,
have a long history, having enabled the development of modern physics beginning in the 19t
century by the contribution of researchers including Gauss, Maxwell, and Thompson [20]. The
work in metrology at national laboratories impacts international trade and regulations that as-
sure safety and quality of products, advances technologies to stimulate innovation and to
facilitate the translation of discoveries into efficiently manufactured products, and in general
serves to improve the quality of life. The concepts and technical devices that are used to char-
acterize measurement uncertainty evolve continuously to address emerging challenges as an
expanding array of disciplines and sub-disciplines in chemistry, physics, materials science, and
biology are considered.

While the concepts of metrology are a primary responsibility of national measurement labora-
tories, the goal is that these concepts should be widely applicable to all kinds of measurements
and all types of input data[21]. As an example of their potential universality, the terms of the
VIM have been adapted to provide a useful guide for geoscience research [22].

2 Indicators of Confidence and Reduction of Uncertainty in Research

Results
Sources and quantification of uncertainty. Reproducibility is one of the concepts considered
when the metrology community assesses measurement uncertainty, but it is not the only one.
Uncertainties in measurement typically arise from multiple sources. In the Guide to Uncer-
tainty in Measurement [23], the international metrology community lists a number of examples
of sources of uncertainty (see Table 2).

1) Incomplete definition of the measurand;

2) Imperfect realization of the definition of the measurand;

3) Non-representative sampling—the sample measured may not represent the defined measurand;

4) Inadequate knowledge of the effects of environmental conditions on the measurement or imper-
fect measurement of environmental conditions;

5) Personal bias in reading analogue instruments;

6) Finite instrument resolution or discrimination threshold;

7) Inexact values of measurement standards and reference materials;

8) Inexact values of constants and other parameters obtained from external sources and used in the
data-reduction algorithm;

9) Approximations and assumptions incorporated in the measurement method and procedure;

10) Variations in repeated observations of the measurand under apparently identical conditions.

Table 2. Possible sources of uncertainty in a measurement (from the Guide to the Expression of Uncer-
tainty in Measurement (GUM), Section 3.3.2 (JCGM, 2008). These sources are not necessarily independent,
and some of sources 1) to 9) may contribute to source 10). Of course, an unrecognized systematic effect
cannot be taken into account in the evaluation of the uncertainty of the result of a measurement but nev-
ertheless contributes to its error.

The sources of uncertainty can be systematically identified and quantified. For a discrete meas-
urement, such as quantifying the amount of a substance, statistical measures of uncertainty in
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the measurement are compared across metrology laboratories to assess their relative confi-
dence in the measurement. Uncertainties are determined in each laboratory at each step of
the measurement process and will include for example, the error in replicate weighing and pi-
petting steps. An expanded uncertainty budget is determined as an aggregate value that
accounts for the combination of uncertainties at all steps in a measurement process. The quan-
tification of uncertainty provides a basis for the limits within which that measurement, or
deviation from that measurement, is meaningful.

In a research setting, the formalism of calculating an expanded uncertainty is rarely necessary,
but acknowledging and addressing sources of uncertainty is critical. Regardless of discipline, at
each step of a scientific endeavor we should be able to identify the potential sources of uncer-
tainty and report the activities that went into reducing the uncertainties inherent in the study.
One might argue that the testing of assumptions and the characterization of the components of
a study are as important to report as are the ultimate results of the study.

Systematic reporting of sources of uncertainty. While research reports typically include infor-
mation about reagents, control experiments, and software, this reporting is rarely as thorough
as it could be, and the presentation of such details is not systematic. We have suggested a sys-
tematic framework [24] (shown in Table 3) for identifying and mitigating uncertainties that
includes explanation of assumptions made, characteristics of materials, processes, and instru-
mentation used, benchmarks and reference materials, tests to evaluate software, alternative
conclusions, etc. In addition, providing the data and metadata are critical to reducing the ambi-
guity of the results. Table 3 is a general guide that is applicable to most areas of research.

If we assume that no single scientific observation reveals the absolute “truth”, the job of the
researcher and the reviewer is to determine how ambiguities have been reduced, and what am-
biguities still exist. The supporting evidence that defines the characteristics of the data and
analysis, and tests the assumptions made, provides additional confidence that one has in the
results. Confidence is established when supporting evidence is provided about assumptions,
samples, methods, computer codes and software, reagents, analysis methods, etc., that went
into generating a scientific result. Confidence in these components of a study can be an indica-
tion of the confidence we can have in the result. Confidence can be increased by recognizing
and mitigating sources of uncertainty.

3 Metrology Tools for Achieving Confidence in Research Results

The systematic consideration of sources of uncertainty in a research study such as presented in
Table 3 can be aided by a number of visual and experimental tools. For example, an experi-
mental protocol can be graphed as a series of steps, allowing each step to be examined for
sources of uncertainty. This kind of assessment can be valuable for identifying activities that
can be optimized, or places where in-process controls or benchmarks can be used to allow the



State the plan

a. Clearly articulate the goals of the study and the basis for generalizability to other settings, species,
conditions, etc., if claimed in the conclusions.

b. State the experimental design, including variables to be tested, numbers of samples, statistical
models to be used, how sampling is performed, etc.

c. Provide preliminary data or evaluations that support the selection of protocols and statistical
models.

d. Identify and evaluate assumptions related to anticipated experiments, theories, and methods for

analyzing results.

Look for systemic sources of bias and uncertainty

Characterize reagents and control samples (e.g., composition, purity, activity, etc.).

b. Ensure that experimental equipment is responding correctly (e.g., through use of calibration ma-
terials and verification of vendor specifications).

c. Show that positive and negative control samples are appropriate in composition, sensitivity, and
other characteristics to be meaningful indictors of the variables being tested.

d. Evaluate the experimental environment (e.g., laboratory conditions such as temperature and tem-
perature fluctuations, humidity, vibration, electronic noise, etc.).
Characterize the quality and robustness of experimental data and protocols

a. Acquire supplementary data that provide indicators of the quality of experimental data. These in-
dicators include precision (i.e., repeatability, with statistics such as standard deviation and
variance), accuracy (which can be assessed by applying alternative [orthogonal] methods or by
comparison to a reference material), sensitivity to environmental or experimental perturbants (by
testing for assay robustness to putatively insignificant experimental protocol changes), and the
dynamic range and response function of the experimental protocol or assay (and assuring that
data points are within that valid range).

b. Reproduce the data using different technicians, laboratories, instruments, methods, etc. (i.e.,
meet the conditions for reproducibility as defined in the VIM).

4. Minimize bias in data reduction and interpretation of results

a. Justify the basis for the selected statistical analyses.

b. Quantify the combined uncertainties of the values measured using methods in the GUM [23] and
other sources [27].

c. Evaluate the robustness and accuracy of algorithms, code, software, and analytical models to be

used in analysis of data (e.g., by testing against reference datasets).

Compare data and results with previous data and results (yours and others’).

Identify other uncontrolled potential sources of bias or uncertainty in the data.

Consider feasible alternative interpretations of the data.

Evaluate the predictive power of models used.

Minimize confusion and uncertainty in reporting and dissemination

Make available all supplementary material that fully describes the experiment/simulation and its

analysis.

Release well-documented data and code used in the study.

c. Collect and archive metadata that provide documentation related to process details, reagents,
and other variables; include with numerical data as part of the dataset.
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o

Table 3, reproduced from Plant et al. (2018) on “identifying, reporting, and mitigating sources of uncer-
tainty in a research study.”

results of intermediate steps and performance of the instrument to be evaluated before pro-
ceeding. Another useful tool is an Ishikawa or cause and effect diagram [25]. This is a



systematic way of charting all the experimental parameters that might contribute to uncer-
tainty in the result.

Below are some of the services and products that NIST supplies that help practitioners realize
some of the concepts itemized in Table 3.

Reference materials. Instrument performance characterization and experimental protocol

evaluation are aided by the use of Reference Materials and Standard Reference Materials®
(SRM). SRMs are the most highly characterized reference materials produced by NIST. RMs
and SRM are developed to enhance confidence in measurement by virtue of their well-charac-
terized composition or properties, or both. RMs are supplied with a certificate of the value of
the specified property, its associated uncertainty, and a statement of metrological traceability.
These materials are used to determine instrument performance characteristics, perform instru-
ment calibrations, verify the accuracy of specific measurements and support the development
of new measurement methods by providing a known sample against which a measurement can
be compared. Instrument design and environmental conditions can be systematic sources of
uncertainty that the use of reference materials with highly qualified compositional and quanti-
tative characteristics can help identify. Reference materials also assist the evaluation of
experimental protocols and provide a known substance that can allow comparison of results
between laboratories. NIST SRMs are often used by third-party vendors who produce reference
materials to provide traceability to a NIST certified value. Such a material is referred to as a
NIST Traceable Reference Material™.

Calibration services. NIST provides the highest order of calibration services for instruments and
devices available in the United States. These measurements directly link a customer's precision
equipment or transfer standards to national and international measurement standards.

Reference instruments. NIST supports accurate and comparable measurements by producing
and providing Standard Reference Instruments that provide to customers the ability to make
reference measurements or generate reference responses in their facilities based on specific
NIST reference instrument designs. These instruments support assurance of measurements of
time, voltage, temperature, etc.

Underpinning measurements that establish confidence. RMs and SRMs, Calibration Services,
and Standard Reference Instruments provide confidence in primary measurements, but also in
the instruments and materials that underpin the primary laboratory or field measurement, such
as temperature sensors, pH meters, photodetectors, and light sources.

Interlaboratory comparison studies. NIST leads and participates in Interlaboratory comparison
studies as part of their official role in the international metrology community (BIPM), and in less
formal studies. An example of a less formal study involving NIST was a comparison with five la-
boratories to identify and mitigate sources of uncertainty in a multistep protocol to measure
the toxicity (ECso) of nanoparticles in a cell-based assay. The study was undertaken because of
the large differences in assay results and conclusions from the different labs, and the inability of
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the participants to easily identify and control the sources of uncertainty that resulted in the ob-
served irreproducibility. A cause and effect diagram was created to identify all potential
sources of uncertainty, and this was followed by a preliminary study of that used a design of ex-
periment approach to perform a sensitivity analysis to determine how nominal variations in
assay steps influenced the ECsp values [26]. Cell seeding density and cell washing steps were
two variables that were systematically explored for their effect and yielded the knowledge that
it was important to specify these protocol details. As a result of the analysis, a series of in pro-
cess controls were run with every measurement. The results of the controls wells were
expected to be within a specified range to assure confidence in the test result. Control wells
assess variability in pipetting, cell retention to the plate after washing, nanoparticle dispersion,
and other identified sources of variability. Additional control experiments that were reported
included small tandem repeat analysis of the cell lines used in the different laboratories, and
analysis of nanoparticle aggregation. The outcome was a robust protocol, benchmark values
for intermediate results, concordant responses in ECso to a reference preparation by all labora-
tories, and confidence in the meaningfulness of the results reported in each laboratory.

In general, experimental science laboratories that participate in formal inter-laboratory studies
[27]know from experience that it often takes several iterations of studies, and intensive deter-
mination of sources of variability, before different expert laboratories produce comparable
results. The result of these efforts is a more robust and reliable experimental protocol in which
critical parameters are controlled.

Standard reference data. The NIST Standard Reference Data portfolio comprises nearly one
hundred databases, tables, image and spectral data collections, and computational tools that
have been held to the highest possible level of critical evaluation. Many of these are compila-
tions of data published in journals, but subject to expert review and assessment of
measurement practices and uncertainty characterization. Others consist of measurements
made by NIST scientists and validated through inter-laboratory comparisons.

Specifically, critical evaluation means that the data are assessed by experts and are trustworthy
such that people can use the data with confidence and base significant decisions on the data.
For numerical data, the critical evaluation criteria are:

a. Assuring the integrity of the data, such as provision of uncertainty determinations and
use of standards;

b. Checking the reasonableness of the data, such as consistency with physical principles
and comparison with data obtained by independent methods; and

c. Assessing the usability of the data, such as inclusion of metadata and well-documented
measurement procedures.

For digital data objects, the critical evaluation criteria are:

a. Assuring the object is based on physical principles, fundamental science, and/or widely
accepted standard operating procedures for data collection; and

b. Checking for evidence that



i. The object has been tested, and/or
ii. Calculated and experimental data have been quantitatively compared.

NIST SRD serve as an exemplar of the kind of processes that, if adopted more widely, would im-
prove confidence in research data generally.

4 Thorny Metrological Caveats to Reproducibility

Definitional challenges associated with reproducibility. When national metrology laboratories
around the world compare their measurement results in the formal setting of the BIPM, there
are accepted expectations regarding expression of uncertainties in the measurements reported,
and how the measurements from different laboratories are compared. The reporting of the val-
ues and uncertainties from the different labs provides an indication of relative proficiency that
can be accessed for comparative purposes. Outside of this formal setting, it is less clear how
exactly to compare results from different laboratories, and therefore, how to assess whether a
result was reproducible or not. Many of our greatest measurement challenges today preclude
an easy assessment of reproducibility. A few example are presented below.

Identity vs. a numerical value. While DNA sequencing is not the only case, it is a good example
of where the identity of the bases and their relative locations is the measurand. A NIST-hosted
consortium called Genome in a Bottle (GIAB)! has been working for several years to amass suffi-
cient data that would allow an evaluation of the quality of data that can be achieved by
different laboratories. This is a large inter-laboratory effort in which the same human DNA ma-
terial is analyzed by different laboratories. The data indicate that good concordance of
sequence is achieved readily in some portions of the genome, and other regions are more prob-
lematic and require accumulation of more data, and that there are other regions where it may
be impossible to establish a high level of confidence. Putting a numerical value on concordance
under these circumstances is challenging.

Complexity of research studies and measurement systems. Part of the challenge in genome
sequencing, and which is under investigation in GIAB, is that instruments used to sequence DNA
have different biases, different protocols introduce different biases, and the software routines
for assembling the intact sequence from the fragments often give different results. Determining
the sources of variability and whether it is even possible to calculate an uncertainty is still ongo-
ing. For many measurements associated with complex research studies, determining a detailed
uncertainty determination is in itself a research project. However, reporting what is known
about each of the sources of uncertainty presented in Table 3 would be possible, and should be
encouraged.

No ground truth. GIAB is a good example that has much in common with many of our most
pressing measurement challenges today. Even with a reference material that everyone can use

1 http://jimb.stanford.edu/giab/




and compare the results from, the real answer—the ground truth sequence—isn’t known. DNA
sequencing is certainly not the only example of this dilemma.

How close is close enough to call reproducible? Establishing that a result has been reproduced
or not can be complicated. Especially when different instrumentation is used, the exact value
of a complex measurement may not be identical to that achieved by another laboratory. If an
expanded uncertainty was determined, as is done when national metrology laboratories com-
pare their measurements, then a comparison could be made, but this is unlikely in a research
environment and given the complicated nature of many of the studies being performed. Hu-
man cell line authentication is an example where a committee had to arbitrarily establish a
threshold of similarity in the identification of the size and number of small tandem repeat (STR)
sequences. Above 75% concordance in STR sequences identified was determined to be suffi-
cient for identification [28].

Unique events, sparsity of data. Numerous scientific inquiries rely on observations of one-time
events: earthquakes, tsunamis, hurricanes, epidemics, supernovae, etc. Researchers gain un-
derstanding of such phenomena through observations of multiple distinct events have similar,
but not identical, behavior. Indeed, one could argue that climate studies and predictions are of
this nature, given that it is impossible to run a controlled experiment.

5 Metadata Issues

Enabling reuse of results by establishing confidence in assumptions, software, and data. Itis
hard to imagine that any experimental research result in the present era that does not rely on
computer software, ranging from spreadsheets to shared community software packages to
complex custom codes. How many research papers are there that include the throw-away line
“the data were reduced in the usual manner”? Meaning, of course, that no one bothered to
record the various input parameters and options. As noted by Stodden and Miguez [29], docu-
menting what software was used and sharing code are essential practices for assuring
reproducible and reusable research. Increasingly we are seeing the publication and sharing of
data and processing steps in, for example, Jupyter? notebooks, and also the registration of soft-
ware packages and source codes in shared indexes (e.g., the Astrophysics Source Code Library?
or the NIST Materials Resource Registry* [30]. In fact, the Materials Resource Registry indexes
both data and software, treating the latter as a special type of data.

The ability to build on published research results will be limited by the reliability of the data, as-
sumptions, and software on which the conclusions are based. It should be de rigor to
demonstrate confidence in these components of a study by providing supporting evidence. At
the very least, researchers should share data and software, including source code. Outside of
computer science, the unreliability of software is often underappreciated. Rigorous testing of

2 http://jupyter.org

3 http://ascl.net
4 https://materials.registry.nist.gov/
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software should be performed, as it has long been understood that numerical software has reli-
ability challenges [31]. Testing the ability to produce the same results from computer code
running in different machines under different operating systems and with the same inputs pro-
vides an indication that the results are generalizable beyond a particular computing
environment [32], [33].

Sharing of data and software within and across disciplines should be a strong motivator for
adopting a framework of general principles for assessing confidence in research studies. If the-
orists, for example, are going to use laboratory data as input, the details of the experiment and
the extent to which the data were qualified might influence model selection and details associ-
ated with the study, including the effect of propagating measurement uncertainty. Particularly
when considering the use of data in interdisciplinary research, it is important that the quality of
the data generated in one field is understood by a user of that data who may be not be an ex-
pert in that field of study. Identifying criteria that establish confidence in results that everyone
understands will facilitate appropriate reuse of study results.

Availability of data, metadata, and provenance information. As our ability to store, transfer,
and mine large amounts of data improves, the importance of establishing confidence in the
guality of those data increases. At the moment, there are few tools for assessing quality of
data; one project underway is focused on identifying the presence of supporting data out of
published research reports [34], and NIST’s Thermodynamics Data Center has long employed
partially automated data quality assessment tools [35]. Adoption of a widely accepted system-
atic framework for reporting such data would enable this effort. Supporting data that provides
confidence in assumptions, models, experimental data, software and analysis needs to be col-
lected more diligently and reported more systematically. Particularly difficult is the collection
and reporting of details of protocols used in studies that involve complex experimental systems.
Improved metadata acquisition software incorporated into laboratory information manage-
ment systems could facilitate the collecting, sharing, and reporting of details of protocols. The
Research Data Alliance has recently started a new Working Group on Persistent Identification of
Instruments,®> which for experimental data could greatly improve provenance through tracing
data back to a particular instrument and its associated calibration information. Expert software
systems that facilitate the collection of highly granular experimental metadata could help to
identify subtle experimental differences that are sources of uncertainty and causes of irrepro-
ducibility; this knowledge might provide important information about the systems under study.
A requirement for effective metadata sharing is the development of better methods of harmo-
nized vocabularies possibly through the use of natural language methods. Unambiguous
meanings and context in metadata labels would enable searching and discovery of similar and
dissimilar experimental protocol details. Within the metrology community there is the concept
of “fit for purpose.” Good metadata will make it clear whether a dataset is relevant and appro-
priate for use, e.g., noting its range of applicability, reliability, and uncertainty.

5> https://rd-alliance.org/groups/persistent-identification-instruments
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How much reporting is enough? Irreproducibility can be an important and positive factor in
advancing science. Failure to reproduce a result can play a critical role in discovery of imperfect
measurements or observations and can uncover fundamental flaws in theoretical assumptions
and interpretations. An example is the use of the Hubble Constant to determine the age of the
universe, which in the 1930’s was inconsistent with the determination from radioactive dating
on Earth (which indicated the age of the Earth exceeded the age of the Universe!); twenty years
later it was found that the calibration of the distance scale (based on the period-luminosity re-
lationship for Cepheid variable stars) was applied mistakenly to star clusters rather than
individual stars®. Often, irreproducibility is the result of failure to identify and control major
sources of variability. Medical meta-analysis [36] often will increase the state of knowledge
about the performance of a therapy even when different studies produce inconsistent results.
Irreproducibility can indicate that some parameter that has not been controlled is an important
source of uncertainty [37]. In biomedical research, there can be so many uncontrolled and hid-
den variables that there is a high likelihood that experiments preformed in different labs are
actually substantially different. If there was full and systematic reporting of experimental de-
tails, it may be possible to discover previously unrecognized sources of variability that provide
important scientific insight. One could argue that it is impossible to report every experimental
variable, protocol nuance, and instrument parameter. One could also argue that doing better
than is currently done would increase the rate at which scientific advances occur. More invest-
ment in software tools to enable the collection, storage, and searching of metadata would
make it more feasible to fully describe our research studies.

6 Discipline-Specific Considerations

The importance of reproducibility relative to other aspects of the scientific process can be dif-
ferent for different scientific disciplines. However, regardless of discipline, at each step of a
scientific endeavor we should be able to ascertain the activities that went into testing assump-
tions and characterizing components of the study.

Astronomy

In the report of the NSF-sponsored Work-

shop on Robustness, Reliability, and Tr.l.‘lﬁu & coatrolled otfeh'me-\b
Reproducibility in Scientific Research,” a di- No Yes

agram sketched by Roger Peng is Clintea| ¢
reproduced in which various research disci- 9‘\“‘,& k‘o F'oewo ‘ Scitmes (S
plines are categorized as whether they are

. e
support by strong basic theory or not, and \”‘S‘ :
whether they have a tradition of controlled Aoty Yo 14 ronowy Pudele ghpses
experiments. Astronomy is shown to be ‘
jsupporte?l _by theory—true, but asj not hav- Figure 1. Roger Peng’s characterization of various
ing a tradition of controlled experiments. research disciplines. From Weitz (2017).

6 https://www.cfa.harvard.edu/~dfabricant/huchra/hubble/
7 http://www.mrsec.harvard.edu/2017NSFReliability/in-
clude/NSF Workshop Robustness.Reliability.Reproducibility.Report.pdf
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With the advent of large-scale digital sky surveys and routine pipeline-based calibrations that
produce science-ready data products, this does not seem to be an accurate characterization.
Hanisch has worked in astronomy for more than thirty years, co-leading the development of
the Multi-Mission Archive at Space Telescope and directing the US Virtual Astronomical Obser-
vatory. The vast majority of astronomical research data is open (often after a nominal
proprietary period such as 12 months), leading to substantial reanalysis and repurposing of data
(nearly two-thirds of peer reviewed publications based on Hubble Space Telescope observa-
tions are based on archival data).® The Sloan Digital Sky Survey has yielded some 8,000 peer-
reviewed publications, the vast majority of which have been written by researchers who are not
part of the SDSS project.® Owing to the prevalence of open data in astronomy, the wide use of
standard software packages and pipeline-calibrated data, and a relatively small and well-con-
nected research community (~10,000 professional astronomers worldwide) reproducibility
problems are rare. Where they do exist, as in the Hubble constant studies mentioned earlier,
they result from incomplete information about the phenomenon being measured.

Physics

The report from the NSF-sponsored workshop mentioned above®? focused primarily on the re-
search disciplines within NSF’s Directorate for Mathematical and Physical Sciences. Its primary
conclusion was “that, for the scientific disciplines within MPS, the science process works, and
that there is not a ‘crisis’ of robustness, reliability, and reproducibility.” We believe, however,
that the situation is more complex, and that this report’s characterization of some disciplines as
“mature” and others, by contrast, as “immature” casts an unnecessarily pejorative tone.!! For
large-scale high-energy physics experiments such as those at the Large Hadron Collider, one ex-
pects that extreme care has been taken in acquiring, calibrating, and analyzing the data. But
even big experiments can produce erroneous results, such as was the case in 2011 when the
OPERA experiment in Italy reported that neutrinos produced at CERN travelled faster than the
speed of light [38]. We would expect that there are many small laboratory experiments in
physics that have problems similar to those in other disciplines, e.g., where instrumental
metadata is stored in proprietary vendor formats and where hidden variables lead to challenges
in reproducibility.

8 https://archive.stsci.edu/hst/bibliography/pubstat.html

9 Astrophysics Data System search, 11 May 2018, https://ui.adsabs.harvard.edu/

10 http://www.mrsec.harvard.edu/2017NSFReliability/in-

clude/NSF Workshop Robustness.Reliability.Reproducibility.Report.pdf

11 One of us, Hanisch, was a participant in the workshop and co-edited the report. He tried (unsuccessfully!) to
delete the “mature” characterizations from the document.
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Materials Science

Materials science is a major area
of research at NIST, and NIST man-
ages the national Materials
Genome Initiative (MGl),*?> whose
goal is to accelerate the develop-
ment of new materials at lower
cost through better integration of
computer simulation and experi-
mentation. There are significant
challenges in reproducibility in ma-
terials science largely around
growth, processing, and sample
preparation and processing. For example, the fine-scale structure in an alloy can vary greatly
depending on how it is cooled. Complexity in materials systems such as nanocomposites,
where homogeneity might be lacking and where interfacial properties are poorly understood,
proposes a grand challenge in terms of experimental reproducibility that compromises the lab-
to-market pathway. The disruptive promise from novel materials systems such as graphene
and 2D systems is often discouraged by poor reproducibility from growth and processing, which
underlies limited understanding of the physico-chemical phenomena underpinning those
events. If the growth and processing history of a material is not fully documented, if unknown
(and hence unmeasured) effects impact properties, or if significant instrumental parameters
are hidden in proprietary binary data formats, reproducibility suffers.

Alloy cooled Alloy cooled

processes. (Credit: J. Warren, NIST.)

Biology

For highly complicated studies that involve a very large number of parameters such as are con-
ducted in the biomedical sciences, it may be very difficult to uncover, and impossible to control,
all sources of uncertainty and variability in a study; in such cases an inability to reproduce a re-
sult may simply indicate that the two experiments were in fact different, possibly for reasons
that are not well understood. For these kinds of studies, it would be of great use to have suffi-
cient information and facility to compare exactly which aspects of which steps in the processes
were different; such a meta-analysis may provide valuable scientific insight. In addition to the
challenges of parameter space, many biological and biomedical systems are characterized by a
degree of complexity that is not apparent in other sciences. For example, stochastic fluctua-
tions in biochemical reactions within cells, the number of biochemical processes that can be
involved in cellular response, and the promiscuity of alternative intracellular pathways by which
environmental information can be processed, lead to inherent heterogeneity in biological re-
sponses. Biological heterogeneity is different from, but is convoluted with, measurement noise.
Accurate evaluation of biological heterogeneity requires independent assessment of measure-
ment uncertainty. The reporting of statistical means for biological data is common, but may
not very informative because of this convolution. Also, the mean is often not an appropriate

12 https://www.mgi.gov/
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metric since the biological response function is often not well-described by a Gaussian distribu-
tion. Table 4 is taken from Keating et al. [39], and articulates some challenges and strategies in
single cell experiments for distinguishing measurement uncertainty from biological variability.

Challenge Strategy

Measurements of biological ® Measure sufficient numbers of cells to assure adequate sampling of
response to environmental population diversity (heterogeneity)
conditions °

Use appropriate statistics for comparison (e.g., cumulative distributions,

not means)

® Both the mean response and the shape of the distribution of responses
may change in response to treatment.

® Use appropriate positive and negative controls.

©® Compare the results from orthogonal analytical methods: different
methods should return similar responses.

® Measure response function (concentration or time dependence) to test for

a systematic effect.

Distinguish inherent biological ® Measurement variability ® Quantify the uncertainty due to variability (e.g., SD) in the measured value
heterogeneity from due to instrument response. Measure within day (repeatability) and
measurement variability day-to-day (reproducibility).

® Test the sources of measurement variability (technicians, reagents,
environment, algorithms, protocols), and try to mitigate them.

® Quantify the variation in results from the same sample on different

platforms
® Biological heterogeneity due to ® Test the stability of the distribution of the population characteristic or
stochastic fluctuations phenotype.

® Measure similar distributions from repeated measurements of the
population over long time intervals
® Sorted “subpopulations” will relax over time in culture to a stable
distribution similar to the original distribution
® “Subpopulations” are genetically identical
® Biological heterogeneity due to ® Population phenotypic heterogeneity diverges over time in culture
genetic/genomic differences ® Subpopulations have transcriptomic and genomic differences
°

Minimize uncertainty in Assess instrument performance with benchmarking materials for signal to
measurement variability noise, linearity of response, limit of detection and saturation

® Use control materials (e.g., spike-in RNA into transcriptomic samples) to
test and compare assay platform response and to assess technical
proficiency

® Use control materials to test and optimize protocols for accuracy,
precision, sufficient dynamic range, sensitivity, specificity, and robustness
to small protocol changes

® Test and compare algorithms for robustness and accuracy against ground
truth (if available)

Figure 4. Distinguishing measurement uncertainty from biological variability in a single cell assay (from
[39]).

While techniques like design of experiment can be used to assess interactions between multiple
parameters that are sources of variability in measurement, we are just now entering an era
where the complexity of the biological systems under study, not just the experiments, can be
addressed. In the realm of cell biology for example, complex control mechanisms involve many
molecular species and have both temporal and spatial dependencies. Our ability to collect,
store, search and share very large datasets will be instrumental to recognizing the patterns of
events in complex systems and for developing the understanding of fundamental principles for
predicting outcomes in complex systems. More than ever, we must have confidence in the data
that will be available for development of models of such complex systems.

15



7 Qualifying and Characterizing Measurement Systems
Table 5 presented by Plant et al. [40] was developed based on criteria provided by the U.S.
Food and Drug Administration for qualifying assays that are used to characterize a regulated bi-

ological product.

This measurement elements in the Table are criteria that, when identified,

help to provide confidence about the assay and the results of the assay. Achieving the
knowledge of these measurement elements requires a high level of understanding of, and ex-
perience with the assay. Reporting these characteristics for an assay provides two advantages.
One advantage is for the user of the assay. Particularly when a regulated biological product is
being evaluated, it is critical for the manufacturer to have clear expectations about perfor-
mance of the characterization assays. It is critical that when an assay provides an answer, that
there is a high level of confidence that the assay result is an accurate assessment of the prod-
uct. Many regulated biological products result from precious samples and expensive and
lengthy manufacturing processes; it is critical that if an assay indicates ambiguity it is clear that
that ambiguity arises from the product, and that the veracity of the assay is non-ambiguous.
Clearly another important use of these criteria is to establish confidence for the regulatory pro-

cess.

Measurement
element
Accuracy

Precision

Robustness

Limit of detection

Response function

Specificity

Description

The measurement delivers the
true value of the intended ana-
lyte (i.e., the measurand)

Repeatability (replicates in se-
ries) and reproducibility on
different days and in different
labs

Lack of sensitivity to unin-
tended changes in
experimental reagents and pro-
tocols

Given the noise in the measure-
ment, the level below which
the response is not meaningful

Dependence of signal on sys-
tematic change in experimental
condition

The analytical result is not con-
founded by sample
composition or physical charac-
teristics

Best practice

Test your experimental observation using
orthogonal analytical methods. Use well-
defined reference materials to check in-
strument response and method validity.
Replicate the measurement in your own
lab, perhaps with different personnel.
Have another lab perform the experiment.
Participate in an interlaboratory compari-
son study.

Test different sources of reagents, fixation
conditions, incubation times, cell densities
and analysis software

Use appropriate positive and negative con-
trols to determine background signal, and
use dispersion in replicate measurements
to determine measurement uncertainty.
Systematically test concentration or activ-
ity with reference samples; determine the
range in which the assay is sensitive.
When testing samples from different
sources, ensure that apparent response
differences are not due to sample matrix
differences by using spike-in controls.

Table 5. Reproduction of Table 1 from Plant et al. (2014) showing key elements of a good measurement.
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8 May 2018 Workshop

On May 1-3, 2018 a workshop*3? entitled “Improving Reproducibility in Research: The Role of
Measurement Science,” was hosted by the National Physical Laboratory, Teddington, UK and
was co-organized by NPL, NIST, and several other national metrology institutes (NMls). From
the workshop flyer,

“The goal of this workshop is to bring together experts from the measurement and
wider research communities to understand the issues and to explore how good
measurement practice and principles can foster confidence in research findings; in-
cluding how we can tackle the challenge posed by increasing data volumes in both
industry and research.”

Approximately 80 individuals registered for the workshop, representing academia, industry, and
government (NMls in particular). The format of the workshop included plenary presentations,
panel discussions, breakout sessions, and a road-mapping exercise. The ultimate outcome of
the workshop will be a report with recommendations for actions the network of NMls, working
in collaboration with the BIPM, can take to help improve reproducibility and confidence in re-

search.

The road-mapping exercise exposed a potential list of areas where the metrology community
can hope to make an impact. We note that these activities have not yet been prioritized nor
endorsed by the individual NMls.

Intercomparisons and Replication Studies

Noted importance of key comparisons and other interlaboratory studies specifically
aimed at measurement of the same measurand.

Should aim to assure that all outputs of research studies are replicable through ma-
chine-actionable data and metadata (such as Jupyter notebooks).

Should aim to have data from all measurements to be openly available with calibration
certificates.

Intercomparisons require consistent vocabularies and ontologies in order to be interop-
erable.

Repeatability and Reproducibility

Some fields such as the pharmaceutical industry require comparisons prior to approval
of a new drug.

Instrumentation needs to have readily accessible metadata for all information affecting
data and measurements, preferably in open, non-proprietary formats.

The NMils should lead by example, demonstrating best measurement practices internally
and sharing these with the broader research community.

Increase automation of data acquisition so as to minimize potential for human error

13 http://www.npl.co.uk/improving-reproducibility-in-research
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e Aim for automatic capture of the research process (workflow), through to publication of
machine-actionable research articles.
e Reward scientists who produce reproducible, re-usable research data and software.

Training

¢ Noted that training in the principles of metrology, uncertainty characterization, statisti-
cal methods, and machine learning is largely lacking in the university curriculum.

e NMIs could consider assisting in developing best-practice guidelines, provide open
source datasets for training and demonstration of proficiency, and create a universal
platform for access to training materials; collaborate with data science training pro-
grams sponsored by CODATA.

e Metrology hackathons for uncertainty estimation in Al and machine learning.

e Establish Software Carpentry!*-like program for exposure to sound measurement meth-
odologies.

International Standards for Data
e Use, adapt, and adopt; numerous metadata standards exist. Where they are lacking
first consider extending existing ones.
e |deally there would be fewer standards, but each with higher adoption rates.
e Need to assure that standards incorporate proper metrology (e.g., unambiguous expres-
sion of units of measure).
e Develop comprehensive directory of relevant standards and their purpose/scope.

Reference Materials, Reference Data
e There is a major gap in reference materials in the bioclinical and materials science re-
search areas.
e Broader use of reference materials and reference data would improve research repro-
ducibility and confidence in measurement.

Traceability
e Consider establishing a Consultative Committee on Data under the auspices of BIPM
e Establish measurement standards and best practices for research areas that must deal
with large numbers of hidden variables, sparsely sampled data, etc.
e Require machine-readable provenance for research data.
e Define framework for uncertainty, reliability, and provenance for Al and machine learn-
ing.

14 https://software-carpentry.org/
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9 Conclusions

We hope to have demonstrated that concepts and practices in the metrology community—if
brought to bear on the practice of scientific research more broadly—could have a profound ef-
fect on the quality of research outputs and thereby increase confidence in the conclusions
drawn. Some of the most important steps to be taken include:

Develop and deploy tools that make it easier to collect and document experimental pro-
tocols (laboratory information management systems, metadata extractors, Jupyter
notebooks)

End practices such as p-hacking, a posteriori data filtering, etc., through improved edu-
cation in statistics and data handling

Verify / qualify the software used in support of experiments and analysis

Promote data stewardship and software development activities as career positions inte-
gral to the advancement of science

Establish long-term institutional commitments to data preservation and dissemination
Apply the FAIR principles to research data broadly

Develop and gain community adoption of discipline-based metadata standards, with
mappings to complementary research domains

Develop techniques for quantifying the uncertainties and understanding the results of
machine learning and deep learning algorithms; provide domain-specific ground-truth
datasets

Engage with publishers and editors of scholarly journals to work toward better presen-
tation of full provenance of research, including the development of machine-actionable
research reports and the reporting of negative results

We emphasize that non-reproducible research is not necessarily indicative of bad science, and
that disagreement between experiments often arises because not all aspects affecting the
measurement are known. Indeed, it is through such inconsistencies that science advances.

References

1. Peng RD: Reproducible research in computational science. Science 2011,
334(6060):1226-1227.

2. Strengthening Forensic Science in the United States: A Path Forward. In. Edited by
Council NR: Committee on Identifying the Needs of the Forensic Sciences Community,
National Research Council; 2009.

3. loannidis JP, Bernstein J, Boffetta P, Danesh J, Dolan S, Hartge P, Hunter D, Inskip P,
Jarvelin MR, Little J et al: A network of investigator networks in human genome
epidemiology. Am J Epidemiol 2005, 162(4):302-304.

4, Open Science C: PSYCHOLOGY. Estimating the reproducibility of psychological science.
Science 2015, 349(6251):aac4716.

5. Baker M: 1,500 scientists lift the lid on reproducibility. Nature 2016, 533(7604):452-

454,

19



10.

11.
12.
13.
14.
15.

16.
17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

Possolo A: Simple Guide for Evaluating and Expressing the Uncertainty of NIST
Measurement Results NIST Technical Note 2015, 1900.

International Vocabulary of Metrology — Basic and General Concepts and Associated
Terms. In.: BIPM; 2012.

Pellizzari ED, Lohr KN, Blatecky AR, Creel DR: Reproducibility : a primer on semantics
and implications for research. Research Triangle Park, NC: RTI Press; 2017.

Collins FS, Tabak LA: Policy: NIH plans to enhance reproducibility. Nature 2014,
505(7485):612-613.

Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ, Buck S, Chambers
CD, Chin G, Christensen G et al: SCIENTIFIC STANDARDS. Promoting an open research
culture. Science 2015, 348(6242):1422-1425.

Boisvert RF: Incentivizing Reproducibility. Communications fo the ACM 2016, 59(10):5.
Reproducibility Initiative [http://validation.scienceexchange.com/#/about]

Weir K: A reproducibility crisis? Monitor on Psychology 2015, 46(9):39.

Baker M: US societies push back against NIH reproducibility guidelines. Nature 2015.
Lash TL: Declining the Transparency and Openness Promotion Guidelines.
Epidemiology 2015, 26(6):779-780.

Maher B, : Cancer reproducibility project scales back ambitions. Nature 2015.
Mallove EF: Fire from ice : searching for the truth behind the cold fusion furor. New
York, N.Y.: J. Wiley; 1991.

Roush S: Tracking Truth: Knowledge, Evidence and Science. Oxford: Oxford University
Press; 2006.

Thompson PM: Tackling the reproducibility crisis requires universal standards. In:
Times Higher Education. 2017.

Brief history of the Sl [http://www.bipm.org/en/measurement-units/history-si/ ]
Evaluation of measurement data — Guide to the expression of uncertainty in
measurement. In. Edited by Metrology JCfGi: BIPM; 2008.

Potts PJ: Glossary of Analytical and Metrological Terms from the International
Vocabulary of Metrology Geostandards and Geoanalytical Research 2008, 36(3):225-
324.

Evaluation of measurement data — Guide to the expression of uncertainty in
measurement. In., vol. JCGM100:2008 Joint committee for guides in metrology; 2008.
Plant AL, Becker CA, Hanisch RJ, Boisvert RF, Possolo AM, Elliott JT: How measurement
science can improve confidence in research results. PLoS Biol 2018, 16(4):e2004299.
Rouse M: Fishbone diagram. In: Whatlscom. TechTarget; 2015.

Rosslein M, Elliott JT, Salit M, Petersen EJ, Hirsch C, Krug HF, Wick P: Use of Cause-and-
Effect Analysis to Design a High-Quality Nanocytotoxicology Assay. Chem Res Toxicol
2015, 28(1):21-30.

Hibbert DB: Quality Assurance for the Analytical Chemistry Laboratory: Oxford
University Press 2007.

American Type Culture Collection Standards Development Organization Workgroup
ASN: Cell line misidentification: the beginning of the end. Nat Rev Cancer 2010,
10(6):441-448.

20



29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

Stodden VM, S.: Best Practices for Computational Science: Software Infrastructure and
Environments for Reproducible and Extensible Research. Journal of Open Research
Software 2014, 2(1):e21.

Becker CA, Dima A, Plante RL, Youssef S, Medina-Smith A, Bartolo LM, Hanisch RJ,
Warren JA, Brady MC: Development of the NIST Materials Resource Registry as a
means to advertise, find, and use materials-related resources. Materials Science and
Technology Society 2017.

Boisvert RF, International Federation for Information Processing.: Quality of numerical
software : assessment and enhancement, 1st edn. London ; New York: Published by
Chapman & Hall on behalf of the International Federation for Information Processing;
1997.

Mytkowicz T, Diwan A, Hauswirth M, Sweeney PF: Producing Wrong Data Without
Doing Anything Obviously Wrong! Acm Sigplan Notices 2009, 44(3):265-276.

Blackburn SMD, A.; Hauswirth, M.; Sweeney, P.F.; Amaral, J.N.; Brecht, T.; Bulej, L.; Click,
C.; Eeckhout, L.;Fishchmeister, S.; Frampton, D.; Hendren, L.J.; Hind, M.; Hosking, A.L.;
Johnes, R.E.; Kalibera, T.; Keynes, N.; Nystrom, N.; Zeller, A.: The Truth, The Whole
Truth, and Nothing But the Truth: A Pragmatic Guide to Assessing Empirical
Evaluations. ACM Transactions on Programming Languages and Systems 2016, 38(4).
Mclntosh L, et al.: Repeat: A Framework to Assess Empirical Reproducibility in
Biomedical Research. In: OSFPreprints. 2017.

Frenkel M, Chirico RD, Diky V, Yan XJ, Dong Q, Muzny C: ThermoData engine (TDE):
Software implementation of the dynamic data evaluation concept. J/ Chem Inf Model
2005, 45(4):816-838.

Cooper H, Patall EA: The relative benefits of meta-analysis conducted with individual
participant data versus aggregated data. Psychol Methods 2009, 14(2):165-176.
Thompson ME, S.L.R.: Dark uncertainty. Accreditation and Quality Assurance 2011,
16:483-487.

Brumfiel G: Neutrinos not faster than light. Nature 2012.

Keating SM, Taylor DL, Plant AL, Litwack ED, Kuhn P, Greenspan EJ, Hartshorn CM,
Sigman CC, Kelloff GJ, Chang DD et al: Opportunities and Challenges in Implementation
of Multiparameter Single Cell Analysis Platforms for Clinical Translation. Clin Transl Sci
2018, 11(3):267-276.

Plant AL, Locascio LE, May WE, Gallagher PD: Improved reproducibility by assuring
confidence in measurements in biomedical research. Nat Methods 2014, 11(9):895-
898.

21



