Focus: SAE Level 3, 4 Highway Automation

- Assisted driving: Supports the driver
- Partially automated driving: Permanent driver supervision
- Highly and fully automated driving: Reduced driver supervision

- Automated valet parking: 2018
- Remote park assist: 2015
- Evasive steering support: 2015
- Automatic emergency braking: since 2010
- Assisted driving: Supports the driver
- Integrated cruise assist: 2017
- Traffic jam assist: 2015
- Traffic jam pilot: >2018
- Highway pilot: 2020
- Highway assist: 2019
- Urban pilot: >2026

Highly and fully automated driving:
Reduced driver supervision

2018: Evasive steering support
2015: Remote park assist
2010: Automatic emergency braking since
2017: Integrated cruise assist
2019: Highway assist
2020: Highway pilot
>2018: Traffic jam pilot
>2026: Urban pilot
Future Interstates for Automated Driving

Key challenges for automated driving

- **Surround sensors**
 - highly robust
 - in all use cases

- **Online map data**
 - precise and up-to-date every moment

- **Localization**
 - accurate and reliable vehicle position

- **Decision making**
 - correct reasoning and decisions in all situations

- **Perception**
 - comprehensive 360° environment model

- **Motion control**
 - safe, fast and precise in all dimensions

- **Driver monitoring & HMI**
 - for partially and highly automated functions

- **Functional safety**
 - guarantees high standard at reasonable effort

- **Architecture**
 - supports safety, performance and cost targets
Future Interstates for Automated Driving

Current approach

- Perception
- Localization
- Decision Making
- Fail Operational

Validation
Future Interstates for Automated Driving
How can infrastructure help?

- Digital Signage
 - Machine readable
 - Posted periodically
 - Consistent

- Road markings
 - Clear
 - Machine readable attributes
 - Robust to weather

- Standardization
 - Within states
 - Within countries
 - Text independent symbols

- Quality gates
 - Approved for AD
 - Maintained routes
Future Interstates for Automated Driving

How can Infrastructure help? – Safe harbor

Duration to come to safe state

Standstill in current lane

Standstill in rightmost lane

Standstill in emergency lane

Deceleration & extended travel to a safe place

Driver take-over
Future Interstates for Automated Driving
Comparing on-board sensing with smart infrastructure

<table>
<thead>
<tr>
<th></th>
<th>Pro</th>
<th>Con</th>
</tr>
</thead>
<tbody>
<tr>
<td>On board Intelligence</td>
<td>- Safer option, works regardless of infrastructure variations</td>
<td>- Expensive</td>
</tr>
<tr>
<td></td>
<td>- Fastest to market</td>
<td>- Difficult to validate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Limited to premium market segment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Each OEM takes a varied approach</td>
</tr>
<tr>
<td>Smart interstates</td>
<td>- Can reduce costs, complexity of autonomous vehicles</td>
<td>- Even more expensive?</td>
</tr>
<tr>
<td></td>
<td>- Increase safety</td>
<td>- Infrastructure changes take time</td>
</tr>
<tr>
<td></td>
<td>- Can serve a wider audience of vehicles (level 1 and level 2)</td>
<td>- Challenging to achieve consistency of design between states</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Collaboration on common signage between different areas could be effort-intensive</td>
</tr>
</tbody>
</table>
Future Interstates for Automated Driving

Summary

- Step by step to fully automated
- Allow for consumer acceptance
- OEM, Tier1 and infrastructure to work together
- A combined approach of on-board technology and automated driving customized infrastructure would speed up the process

On our way to collision-free driving
Future Interstates for Automated Driving

Thank You!