coexistence of selfishness and sympathy, competition and cooperation, war and peace. Game theory explains the interplay of genes and environment, heredity and culture. Game theory connects simplicity to complexity by reconciling the tension between evolutionary change and stability. Game theory ties the choices of individual people to the collective social behavior of the human race. Game theory bridges the sciences of mind and mindless matter.

Game theory is about putting it all together. It offers a mathematical recipe for making sense of what seems to be a hopelessly messy world, providing a tangible sign that the Code of Nature is not a meaningless or impossible goal for scientists to pursue. And regardless what anyone thinks about the prospects for ultimate success, scientists are certainly pursuing that goal.

“We want to understand human nature,” says Joshua Greene, a neuroscientist and philosopher at Princeton. “That, I think, is a goal in and of itself.”3

Success may still be a long way off. But somewhere in the vision of Asimov’s psychohistory lies an undoubtable truth—that all the world’s multiple networks, personal and social, interact in multiple ways to generate a single future. From people to cities, corporations to governments, all of the elements of society must ultimately mesh. What appears to be the madness of crowds must have a method, and game theory’s successes suggest that it’s a method that science can discover.

“The idea is really to have, in the end, a seamless understanding of the universe, from the most basic physical elements, the chemistry, the biochemistry, the neurobiology, to individual human behavior, to macroeconomic behavior—the whole gamut seamlessly integrated,” says Greene. “Not in my lifetime, though.”

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement