• Characterization of nanophotonic materials and devices;

  • Modeling and simulation; and

  • Packaging and integration.

STRUCTURE OF THE REPORT

Following this introductory chapter, the four areas that comprise nanophotonics are described in more depth in Chapter 2; supporting material in Appendix D describes a representative sampling of research efforts in the area of plasmonics. The enabling technologies for nanophotonics, including nanomaterials growth, synthesis and fabrication, characterization of nanophotonic materials and devices, nanoscale device integration, nanophotonic packaging, and modeling and simulation, are discussed in Chapter 3. Chapter 4 presents potential applications of nanophotonics, emphasizing those of interest to the defense and intelligence communities. The focus of Chapter 5 is international capabilities and investments in nanophotonics. Finally, Chapter 6 discusses the relevance of nanophotonics to major strategic and critical military technologies and summarizes the committee’s conclusions and recommendations.

REFERENCES

Barnes, William L., Alain Dereux, and Thomas W. Ebbesen. 2003. Surface plasmon subwavelength optics. Nature 424 (6950):824-830.

Cai, W., U.K. Chettiar, H-K. Yuan, V.C. de Silva, A.V. Kildishev, V.P. Drachev, and V.M. Shalaev. 2007. Metamagnetics with rainbow colors. Optics Express 15:3333.

Dolling, Gunnar, Christian Enkrich, Martin Wegener, Costas M. Soukoulis, and Stefan Linden. 2006. Low-loss negative-index metamaterial at telecommunication wavelengths. Optics Letters 31 (12):1800-1802.

Ho, K.M., C.T. Chan, and C.M. Soukoulis. 1990. Existence of a photonic gap in periodic dielectric structures. Physical Review Letters 65:3152-3155.

Ho, K.M., C.T. Chan, and C.M. Soukoulis. 1991. Comment on “Theory of photon bands in three dimensional periodic dielectric structures.” Physical Review Letters 66(3):393.

Ho, K.M., C.T. Chan, C.M. Soukoulis, R. Biswas, and M. Sigalas. 1994. Photonic band gaps in three dimensions: New layer-by-layer periodic structures. Solid State Communications 89:413.

John, Sajeev. 1987. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters 58 (23):2486-2490.

Notomi, M., K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama. 2001. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Physical Review Letters 87(25).

Pendry, J.B., A.J. Holden, D.J. Robbins, and W.J. Stewart. 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques 47(11).

Pendry, W. J., John B. Smith, and David R. Smith. 2004. Reversing light with negative refraction. Physics Today 37-43.

Shelby, R.A., D.R. Smith, and S. Schultz. 2001. Experimental verification of a negative index of refraction. Science 77-79.

Soukoulis, Costas M., Stefan Linden, and Martin Wegener. 2007. Negative refractive index at optical wavelengths. Science 315 (5808):47-49.

Vlasov, Yurii A., Martin O’Boyle, Hendrik F. Hamann, and Sharee J. McNab. 2005. Active control of slow light on a chip with photonic crystal waveguides. Nature 438:65-69.

Yablonovitch, E. 1987. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters 58 (20):2059-2063.

Yablonovitch, E., T.J. Gmitter, R.D. Meade, A.M. Rappe, K.D. Brommer, and J.D. Joannopoulos. 1991. Donor and acceptor modes in photonic band structure. Physical Review Letters 67(24):3380-3383.

Yen, T.J., W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, and X. Zhang. 2004. Terahertz magnetic response from artificial materials. Science 303(5663).

Zhang, Shuang, Wenjun Fan, B.K. Minhas, Andrew Frauenglass, K.J. Malloy, and S.R.J. Brueck. 2005a. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Physical Review Letters 94(3):037402.

Zhang, Shuang, Wenjun Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck. 2005b. Experimental Demonstration of Near-Infrared Negative-Index Metamaterials. Physical Review Letters 95(13):137404.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement