Page 256

increased as the size of individual reserves was decreased. Connectivity increases were asymptotic, with the greatest decreases in inter-reserve distance manifested over the range of 5-30% of the management area protected, with reserves getting 76% closer to each other over this range of protection. He also examined connectivity as the ‘target size' of reserves for dispersing propagules, expressed as the number of degrees of horizon covered by reserves. Target size increased steeply as the proportion of the management area protected grows, and was four times greater at 30% of the area in reserves compared to 5%.

OBJECTIVE: MAINTENANCE OF UNDISTURBED HABITAT

Allison et al., in review:

Looked at the effect of natural and human catastrophes on coastal ecosystems. Calculated that, if our aim is to protect a certain proportion of habitats in an undisturbed state, we must protect a larger fraction of the area. How much larger depends on the spatial extent of disturbance events, their frequency and rate of recovery of habitats. The more frequent a disturbance, and the longer the recovery time, the larger the fraction of a management area that must be protected in order to meet conservation targets.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement