National Academies Press: OpenBook
« Previous: 6. STREAM COLLECTION AND NORMALIZATION
Suggested Citation:"7. STREAM RULE PROCESSING." National Research Council. 2004. Statistical Analysis of Massive Data Streams: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11098.
×
Page 315

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

A STREAM PROCESSOR FOR EXTRACTING USAGE INTELLIGENCE FROM HIGH-MOMENTUM INTERNET DATA 315 Figure 4. The events of the stream are converted into Normalized Metered Events and passed directly to a rule engine. Once collected, the data of an ME are normalized into a common data structure called a Normalized Metered Event (NME, see Figure 4), which is an array of attributes that contain different data types similar to a DB record. The only attribute that is required is an end-time stamp. All the other attributes can be configured to suit the processing needs of the application. Unlike DB record schemas the number and type of attributes can change dynamically as it undergoes processing. In this stream processing context new attributes can be dynamically “adorned” to the NME and be used as intermediate variables, which travel along with the NME in the stream, and then disposed of when no longer needed. (The word “travel” is only a metaphor. The NME object doesn't actually move; its position in the stream is tracked by passing a small reference or “pointer” to the NME object from rule to rule.) 7. STREAM RULE PROCESSING Once normalized, the NMEs move directly into a Rule Engine, which has been specifically designed for merging, processing, and splitting streams. The input streams can be independent or related (such as a usage stream and a session stream). In the rule engine (Figure 5) there can be multiple rule chains that operate on the input streams. It is possible to have a single stream processed by multiple rule chains each producing distinctly different output streams, or multiple similar streams processed by a single rule chain, or combinations of the above. There are several forms that the output streams can take: (1) During processing of an NME, attributes within the NME are added, modified, or deleted and the result NME is forwarded immediately to a downstream Collector for further processing. (2) A cyclic aggregation time interval is configured into the Collector and rule chains are configured to

Next: 8. RULE CHAINS AND ASSOCIATED DATA STRUCTURES »
Statistical Analysis of Massive Data Streams: Proceedings of a Workshop Get This Book
×
 Statistical Analysis of Massive Data Streams: Proceedings of a Workshop
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Massive data streams, large quantities of data that arrive continuously, are becoming increasingly commonplace in many areas of science and technology. Consequently development of analytical methods for such streams is of growing importance. To address this issue, the National Security Agency asked the NRC to hold a workshop to explore methods for analysis of streams of data so as to stimulate progress in the field. This report presents the results of that workshop. It provides presentations that focused on five different research areas where massive data streams are present: atmospheric and meteorological data; high-energy physics; integrated data systems; network traffic; and mining commercial data streams. The goals of the report are to improve communication among researchers in the field and to increase relevant statistical science activity.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!