Skip to main content

Currently Skimming:

UNDERSTANDING THE SOCIETAL AND ECONOMIC IMPACTS OF SEVERE SPACE WEATHER
Pages 22-24

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 22...
... Strong auroral currents can disrupt and damage modern electric power grids and may contribute to the corrosion of oil and gas pipelines. Magnetic storm-driven ionospheric density disturbances interfere with HF radio communications and navigation signals from Global Positioning System satellites, while polar cap absorption events can degrade -- and, during severe events, completely black out -- HF communications along transpolar aviation routes, requiring aircraft flying these routes to be diverted to lower latitudes.
From page 23...
... Defining and quantifying these impacts presents a number of questions and challenges with respect to the gathering of the necessary data and the methodology for assessing the risks of severe space weather disturbances as low-frequency/high-consequence events. Multiple variables must be taken into account, including the magnitude, duration, and timing of the event; the nature, severity, and extent of the collateral effects cascading through a society characterized by strong dependencies and interdependencies; the robustness and resilience of the affected infrastructures; the perception of risk on the part of policy makers and stakeholders; the risk management strategies and policies that the public and private sectors have in place; and the capability of the responsible federal, state, and local government agencies to respond to the effects of an extreme space weather event.
From page 24...
... Svalgaard, The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity, Solar Physics 224, 407-422, 2004. Cliver and Svalgaard rank the Carrington Event against other severe storms in terms of sudden ionospheric disturbance, solar energetic particle fluence, coronal mass ejection transit time, storm intensity, and equatorward extent of the aurora.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.