Skip to main content

Technology for Small Spacecraft (1994) / Chapter Skim
Currently Skimming:

Appendix B: Small Spacecraft Applications
Pages 116-120

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 116...
... positionally connected, thereby enabling some missions that previously required a large spacecraft to be performed by several small spacecraft; deployment of one or more sensors in non-sun-synchronous orbits to avoid diurnal effects (e.g., tides) ; quick-response, rapid-repeat-cycle applications to serve civil and defense operational or quasi-operational needs, such as disaster response planning; specialized measurements in a relatively small number of spectral bands, with good radiometric accuracy, high spatial resolution, en c!
From page 117...
... Further refinements include control systems based on differential GPS schemes, which accurately establish position to hold con stelIations of small spacecraft in desirable formations. Non-Sun-Synchronous or Other Less Common Orbits Small spacecraft have notable value in missions requiring the deployment of a few sensors to non-sun-synchronous orbits, as in the case of microwave instruments that do not rely upon the illumination of the sun for their operation ant!
From page 118...
... The proper application of automation and robotics can improve the return on this investment by freeing the crew from repetitious tasks and allowing for more direct involvement of ground-based researchers in mission execution via teleoperations. Within the research environment of the Space Shuttle and the Space Station, small intravehicular activity robots, such as the German ROTEX on the 1993 Space Lab mission can turn a limited flight opportunity into a productive research project.
From page 119...
... The major challenge for this microrover is to apply mobility to a lander experiment, thus providing automated operations that can significantly increase the total returned knowledge. Major enhancements in the capability of such Microsystems can be made by investing in the development of small, calibrates} science instruments and small robotic manipulators capable of extended operations and improved analytical capability on the planets.
From page 120...
... Although this program was subsequently cancelled because of its cost, the subject of radiation hazards and proper protection remains as a central issue for long-term human space interplanetary flight. Examination of radiation effects on small animals in small spacecraft offers an excellent opportunity for further exploration of radiation effects and countermeasures.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.