Skip to main content

Technology for Small Spacecraft (1994) / Chapter Skim
Currently Skimming:

8 Sensors for Small Spacecraft
Pages 66-69

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 66...
... Although impressive advancements were made in miniaturization, many of the instruments were tailored toward specific military requirements and are not directly applicable to NASA scientific missions. While NASA can build on BMDO and ARPA technology advances, NASA must invest in smaller scientific instruments that are compatible with small scientific spacecraft.
From page 67...
... In the past several years, BMDO and other defense agencies have invested sizable funds in the development of advanced sensors anti instruments for acquiring and tracking ballistic missiles and for remote sensing. Several technologies under development by ARPA include a multispectral sensor, which detects a broad range of frequencies simultaneously, and superconducting materials.
From page 68...
... Many of the technologies developed under the BMDO sensor programs have been combined to develop lightweight and low-power star trackers; infrared cameras; ultraviolet and visible wavelength cameras; and laser radar and interactive discrimination capabilities. These instruments have been tested under a variety of programs, such as the Midcourse Space Program Space Experiment and the Infrared Background Signature Survey (Katz, 1993~.
From page 69...
... 2. A research and development program should be directed toward the development of miniaturized, power-efficient, high-performance instruments in the following areas: multifrequency radar altimeter and scatterometer systems; advanced coherent licIar systems; multispectral Earth observation systems operating in the ultraviolet, visible, and infrared wavelengths, employing lightweight optics and advanced detector-array technology; advanced, passive, larger-aperture, high-sensitivity, low-weight, microwave radiometry employing lightweight deployable antennas, room-temperature superconducting sensors, and advanced on-board processors; and lightweight, deployable-mirror optical systems with deformable mirrors correctable to the diffraction limit, for ultraviolet, infrared, and visible long baseline interferometry using several small spacecraft, ultimately resulting in an extremely largeaperture phased array for astronomical observations.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.