Skip to main content

Currently Skimming:


Pages 7-154

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 7...
... 7   Introduction The research was conducted in two sequential phases. The first phase included a critical evaluation of AASHTO T 240 and AASHTO R 28 and other laboratory conditioning procedures that have been proposed as alternates, identification and selection of improved laboratory conditioning procedures for further development in NCHRP Project 09-61, and a detailed design of experiments to further develop the selected laboratory conditioning procedures and relate them to the aging that occurs during construction and the service life of the pavement.
From page 8...
... 8 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging BBR and DT testing at two temperatures. DT testing is not commonly performed in practice, and the 2018 AASHTO re:source removed the test from the Performance Graded Binder proficiency sample testing.
From page 9...
... Research Approach 9   proven acceptable for research, several issues must be addressed before it is considered viable for specification testing. These include: 1.
From page 10...
... 10 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging appearance of sustained transverse cracking for both the thin and thick pavement sections at each site. Sustained transverse cracking means transverse cracking that is growing based on subsequent survey data.
From page 11...
... Research Approach 11   4. The age to first sustained transverse cracking appears to be shorter by approximately 3 years for pavements constructed in the wet, freeze environment.
From page 12...
... 12 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging oven-conditioned loose mixtures using AASHTO T 315, Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR) , with a strain level of 10 percent as specified for short-term conditioned binder.
From page 13...
... Research Approach 13   where a(T) = shift factor, T = temperature (°K)
From page 14...
... 14 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Figure 3. Effect of field aging and laboratory conditioning on binder master curves.
From page 15...
... Research Approach 15   3. PAV-conditioned binder, 4.
From page 16...
... 16 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging recorded using a Perkin Elmer Frontier FTIR. Mid-infrared spectra were collected from 4,000 cm–1 to 600 cm–1 for 32 scans at a resolution of 4 cm–1.
From page 17...
... Research Approach 17   0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000 1.6000 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 C= O + S =O A bs or ba nc e Oxygen, wt % PG 70-22 Air Blown SBS Modified Crumb Rubber Terpolymer Fibers Figure 6. Correlation between FTIR (C=O + S=O)
From page 18...
... 18 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging binder samples were analyzed by liquid (CS2) FTIR to ensure complete solvent removal.
From page 19...
... Research Approach 19   are summarized in Table 4. The MGRF takes 2.5 times longer for short-term conditioning compared to AASHTO T 240.
From page 20...
... 20 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging The remainder of the sample is then long-term conditioned. A unique concept included in the long-term conditioning procedure is samples are removed at various times to allow characterization of aging kinetics.
From page 21...
... Research Approach 21   long-term conditioning into one procedure. First, the binder is short-term conditioned at 163°C for 45 minutes, and two containers are removed for characterizing the properties of the short-term conditioned residue.
From page 22...
... 22 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging is somewhat different and utilizes air blowing to condition binders (Glover et al.
From page 23...
... Research Approach 23   at the vessel wall that occur when using a heating mantle. This resulted in somewhat longer conditioning times (Anderson and Bonaquist 2012)
From page 24...
... 24 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging used to select AASHTO T 240 during the SHRP. All short-term procedures, except the USAT, meet this criterion.
From page 25...
... Research Approach 25   3. Suitability for Use with GTR-Modified Binders and WMA.
From page 26...
... 26 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Based on the engineering assessments presented above, two procedures were selected for further evaluation as possible improvements to AASHTO T 240: modifying AASHTO T 240 to use containers and mixing screws similar to those used in the UK Ageing Profile Test; and static, thin-film test similar to the USAT, but using a thicker film to provide enough conditioned binder for performance grading. The following sections present additional details for these two selections.
From page 27...
... Research Approach 27   of varying consistencies through analysis or simulation. The short-term selection experiment presented later in this chapter includes evaluation of both the original UK design and the design shown in Figure 15 to determine whether a continuous screw or a screw with a solid section to form a film is better.
From page 28...
... 28 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging at 163°C and 110 kPa (kilopascal) absolute pressure.
From page 29...
... Research Approach 29   1.00 1.50 2.00 2.50 3.00 3.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 G* /s in δ at 5 8° C, k Pa Film Thickness, mm AAC-1 Thin Film Conditioned RTFOT Original Figure 16.
From page 30...
... 30 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging used depends on the environmental conditions where the binder will be used, with the lower temperature used in the extreme northern United States, the middle temperature used in most of the United States, and the highest temperature used in desert climates. Practitioners have raised several concerns with AASHTO R 28, the most important being: 1.
From page 31...
... Research Approach 31   mechanical system comprised of engineered plates, eccentric weights, and springs. This energy is then transferred to the material to be mixed.
From page 32...
... 32 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging PAV-conditioned binder was mixed in an unheated container at 100°C. This demonstration showed that the resonant acoustic mixer can entrain air and mix a typical PAV-conditioned binder.
From page 33...
... Research Approach 33   Figure 20. Photograph of asphalt in a sonic bath (50–60 Hz)
From page 34...
... 34 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging inserted 0.5 in into the asphalt, and the power and cycling of the ultrasound were adjusted to maintain a constant temperature that was measured using a thermocouple inserted into the asphalt. It was found for the ARC BI-0002 asphalt that cavitation (bubbles forming)
From page 35...
... Research Approach 35   the USAT, meet this criterion. As discussed above, the developers of the USAT envisioned replacing current BBR testing with 4 mm DSR testing.
From page 36...
... 36 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging of the asphalt oxidation reactions indicate it is a power function of pressure, with an exponent between about 0.2 and 0.6 (Liu et al.
From page 37...
... Binder Time, hrs Thickness, mm Rheological Index (R) Crossover Frequency (ω c)
From page 38...
... 38 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging thickness. Finally, referring to Table 13, the Glover-Rowe parameter increases with increasing conditioning time and decreasing film thickness.
From page 39...
... Research Approach 39   Yield for Thinner Film AASHTO R 28 uses 10 pans that are 140 mm in diameter. Each pan receives 50.0 g of binder, yielding a total of 500 g of conditioned binder.
From page 40...
... 40 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging and the maximum diameter pans and maximum rack height based on the wall clearances provided in AASHTO R 28. This figure shows that larger diameter pans and a taller rack can be used in the PAV to increase the yield of conditioned binder.
From page 41...
... Research Approach 41   various film thicknesses using the revised pan design and the percent recovery from Table 14. With Vendor 1's PAV using the modified rack and pan, two binders for continuous grading can be conditioned during one PAV run down to a film thickness of 0.6 mm.
From page 42...
... 42 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Based on Table 16, a tolerance of about 0.2 g seems appropriate for film thicknesses between 0.8 mm and 1.0 mm. This tolerance is somewhat less than the 0.5 g specified in AASHTO R 28, AASHTO T 179, and AASHTO T 240 but easily obtainable in binder testing laboratories.
From page 43...
... Research Approach 43   where the change in G* /sind is linear with thickness.
From page 44...
... 44 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Short-Term Conditioning Selection Experiment Objective The evaluation of short-term conditioning procedures identified two options for improving short-term laboratory conditioning of asphalt binders: (1) adopt the container and mixing screw modifications to AASHTO T 240 that were implemented in the UK Ageing Profile Test (Hill et al.
From page 45...
... Research Approach 45   The AASHTO M 320 parameter, G* /sind, was measured on residue from the five binder conditioning procedures and recovered binder from the loose mix conditioning.
From page 46...
... 46 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging was 35 g as specified in AASHTO T 240 rather than the 19 g specified in the UK Ageing Profile Test, and (2) the duration of the conditioning was 85 minutes rather than the 45 minutes specified the UK Ageing Profile Test.
From page 47...
... Research Approach 47   Figure 30. Prototype PTFE-coated aluminum RTFO container and lid.
From page 48...
... 48 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging and the mixing screws were preheated in an oven set at 163°C for 90 minutes before weighing the binder into the container. After weighing the binder into the container, the container was rotated to precoat it.
From page 49...
... Research Approach 49   were made at the temperatures used in the binder conditioning procedures to simulate WMA and HMA conditions. The basis for selection of an improved short-term binder conditioning procedure was the properties of binder recovered from loose mixtures that were short-term conditioned following the recommendations from NCHRP Project 09-52, which are 2 hours in a forced draft oven at 135°C for HMA and 2 hours in a forced draft oven at 116°C for WMA.
From page 50...
... Binder Test Temp, °C AASHTO T 240 UK Mixing Screw NCHRP Project 09-61Mixing Screw Static 0.8 mm Film AASHTO T 240 Hot G*
From page 51...
... Binder Test Temp, °C AASHTO T 240 UK Mixing Screw NCHRP Project 09-61Mixing Screw Static 0.8 mm Film AASHTO T 240 Hot G*
From page 52...
... 52 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Figure 33. AASHTO T 240 Relative Aging Index for the UK mixing screw.
From page 53...
... Research Approach 53   Figure 35. AASHTO T 240 Relative Aging Index for AASHTO T 240 with a heating step.
From page 54...
... 54 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging AASHTO T 240 Relative Aging Index is greater than 1.0 when the laboratory conditioning procedure ages the binder more than AASHTO T 240; it is less than 1.0 when the laboratory conditioning procedure ages the binder less than AASHTO T 240.
From page 55...
... Research Approach 55   Comparison of Binder Conditioning Procedures to Loose Mix Conditioning The analysis presented in the preceding section showed the mixing screw procedures are effective at increasing the exposure of more viscous binders to air during short-term conditioning in the RTFOT. The analysis also showed the UK mixing screw design to be more effective than the NCHRP Project 09-61 design.
From page 56...
... Binder Test Temp, °C Replicate 1 Replicate 2 Replicate 3 Average Standard Deviation G*
From page 57...
... Research Approach 57   1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 AA SH TO T 2 40 A gi ng In de x Recovered Binder Aging Index Simulated HMA Aging Simulated WMA Aging Figure 37. Comparison of aging indices from AASHTO T 240 conditioning and loose mix conditioning.
From page 58...
... 58 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 U K M ix in g Sc re w A gi ng In de x Recovered Binder Aging Index Simulated HMA Aging Simulated WMA Aging Figure 39. Comparison of aging indices from UK mixing screw conditioning and loose mix conditioning.
From page 59...
... Research Approach 59   1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 St ati c 0. 8 m m F ilm A gi ng In de x Recovered Binder Aging Index Simulated HMA Aging Simulated WMA Aging Figure 41.
From page 60...
... 60 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Figure 43. Loose mix relative aging index for AASHTO T 240 with heating.
From page 61...
... Research Approach 61   Figure 45. Loose mix relative aging index for the NCHRP Project 09-61 mixing screw.
From page 62...
... 62 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Regression analyses were conducted to determine if the loose mix relative aging index values for any of the laboratory conditioning procedures were affected by the viscosity of the binder at the conditioning temperature. The analysis was conducted separately using data for simulated HMA aging and simulated WMA aging.
From page 63...
... Research Approach 63   for simulated HMA aging and Table 30 for simulated WMA aging. The analysis of the simulated HMA aging data concluded that there is not a significant difference between loose mix conditioning and any of the laboratory binder conditioning procedures.
From page 64...
... 64 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Figures 47 through 50 compare mass change measurements from the various procedures to the mass change measured in AASHTO T 240. These figures show that although there is general agreement between AASHTO T 240 and the candidate short-term binder conditioning procedures, changes to specification limits may be required.
From page 65...
... Research Approach 65   Figure 47. Comparison of mass change from AASHTO T 240 and AASHTO T 240 with heating step.
From page 66...
... 66 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Figure 49. Comparison of mass change from AASHTO T 240 and NCHRP Project 09-61 mixing screw procedure.
From page 67...
... Research Approach 67   In the first option, the use of pure oxygen or oxygen-enriched air was rejected based on laboratory safety concerns. In the presence of pure oxygen or oxygen-enriched air under high pressure, hydrocarbon materials can ignite or explode (Air Products 2014)
From page 68...
... 68 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging where ŷ = predicted response, xi = value of response i, and bij = model coefficients. Figure  51 illustrates the face-centered composite design.
From page 69...
... Research Approach 69   in NCHRP Project 09-23 recommended that higher temperatures may be needed for hotter climates (Houston et al.
From page 70...
... 70 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Run Conditioning Temperature, °C Mass of Binder, g Conditioning Time, hr 1 100 12.5 20 2 120 12.5 20 3 100 25.0 20 4 120 25.0 20 5 100 12.5 40 6 120 12.5 40 7 100 25.0 40 8 120 25.0 40 9 100 18.8 30 10 120 18.8 30 11 110 12.5 30 12 110 25.0 30 13 110 18.8 20 14 110 18.8 40 15 110 18.8 30 16 110 18.8 30 17 110 18.8 30 18 110 18.8 30 19 110 18.8 30 20 110 18.8 30 Table 32. Runs for three-factor, face-centered composite design.
From page 71...
... Research Approach 71   Institute for 4-year and 9-year cores from the Arizona sections (Boysen and Schabron 2015)
From page 72...
... 72 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Condition/ PAV Run PAV Operating Parameters CA Master Curve 20°C Reference Temperature CCl4 FTIR Change from RTFOT Temp, °C Mass, g Time, hrs Td, °C R log ωc C=O S=O Td, °C R log ωc C=O S=O Original NA NA NA −6.3 2.29 1.54 0.2473 0.2735 NA NA NA NA NA RTFOT NA NA NA −5.3 2.55 0.60 0.2895 0.2862 0.00 0.00 0.00 0.0000 0.0000 PAV 20 hr 100 50 20 −4.2 2.96 −0.69 0.3840 0.3399 1.02 0.41 −1.29 0.2031 0.0537 PAV 40 hr 100 50 40 2.2 3.14 −1.39 0.4523 0.3558 7.49 0.59 −1.99 0.2873 0.0696 1 100 12.5 20 5.2 3.11 −1.43 0.4238 0.3560 10.50 0.56 −2.03 0.2590 0.0698 2 120 12.5 20 19.2 3.49 −4.28 0.5950 0.3973 24.49 0.94 −4.88 0.4715 0.1111 3 100 25.0 20 4.9 3.06 −1.23 0.4029 0.3533 10.19 0.51 −1.83 0.2354 0.0671 4 120 25.0 20 11.4 3.46 −3.28 0.5710 0.3788 16.64 0.91 −3.88 0.4290 0.0926 5 100 12.5 40 7.7 3.29 −2.18 0.4886 0.3660 12.93 0.74 −2.78 0.3338 0.0798 6 120 12.5 40 29.0 3.86 −7.13 0.7767 0.4113 34.23 1.31 −7.73 0.6672 0.1251 7 100 25.0 40 7.6 3.20 −1.93 0.4953 0.3697 12.85 0.65 −2.53 0.3442 0.0835 8 120 25.0 40 20.6 3.95 −6.15 0.7200 0.4202 25.91 1.40 −6.75 0.6194 0.1340 9 100 18.8 30 7.4 3.05 −1.51 0.4586 0.3660 12.67 0.49 −2.11 0.3038 0.0798 10 120 18.8 30 19.7 3.67 −5.25 0.6738 0.4147 24.96 1.12 −5.85 0.5673 0.1285 11 110 12.5 30 11.4 3.26 −2.67 0.5424 0.3875 16.71 0.71 −3.27 0.4091 0.1013 12 110 25.0 30 9.0 3.46 −2.87 0.5242 0.3952 14.25 0.91 −3.47 0.3886 0.1090 13 110 18.8 20 7.9 3.17 −1.91 0.4911 0.3648 13.19 0.61 −2.51 0.3351 0.0786 14 110 18.8 40 11.7 3.38 −3.16 0.5889 0.3935 16.96 0.83 −3.75 0.4616 0.1073 15 110 18.8 30 8.5 3.40 −2.81 0.5269 0.3829 13.77 0.85 −3.41 0.3890 0.0967 16 110 18.8 30 10.6 3.39 −2.85 0.5358 0.3808 15.87 0.84 −3.45 0.3958 0.0946 17 110 18.8 30 7.2 3.41 −2.80 0.5432 0.3893 12.43 0.86 −3.40 0.4117 0.1031 18 110 18.8 30 8.2 3.45 −2.86 0.5257 0.3848 13.51 0.90 −3.46 0.3897 0.0986 19 110 18.8 30 7.2 3.43 −2.74 0.5310 0.3841 12.48 0.87 −3.34 0.3943 0.0979 20 110 18.8 30 6.6 3.38 −2.69 0.5289 0.3831 11.88 0.82 −3.29 0.3912 0.0969 CA = Christensen-Anderson CCl4 = Carbon tetrachloride NA = not applicable Table 35. Master curve and FTIR data for AZ1-1.
From page 73...
... Research Approach 73   Table 36. Master curve and FTIR data for AZ1-2.
From page 74...
... 74 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Table 37. Master curve and FTIR data for AZ1-3.
From page 75...
... Research Approach 75   Condition/ PAV Run PAV Operating Parameters CA Master Curve 20°C Reference Temperature CCl4 FTIR Change from RTFOT Temp, °C Mass, g Time, hrs Td, °C R log ωc C=O S=O Td, °C R log ωc C=O S=O Original NA NA NA −6.5 1.73 2.07 0.1271 0.3167 NA NA NA NA NA RTFOT NA NA NA −4.9 1.90 1.31 0.1486 0.3317 0.0 0.00 0.00 0.0000 0.0000 PAV 20 hr 100 50 20 −2.3 2.20 0.20 0.2383 0.4404 2.6 0.30 −1.11 0.0897 0.1087 PAV 40 hr 100 50 40 2.0 2.34 −0.60 0.3186 0.4903 6.9 0.44 −1.91 0.1700 0.1586 1 100 12.5 20 7.8 2.34 −1.00 0.3412 0.5456 12.6 0.44 −2.31 0.1926 0.2139 2 120 12.5 20 NT NT NT 0.6886 0.5469 NT NT NT 0.5400 0.2152 3 100 25.0 20 4.5 2.34 −0.59 0.3063 0.5223 9.4 0.44 −1.90 0.1577 0.1906 4 120 25.0 20 14.2 2.83 −3.17 0.5220 0.5828 19.1 0.93 −4.48 0.3734 0.2511 5 100 12.5 40 7.5 2.58 −1.90 0.4599 0.5768 12.4 0.68 −3.21 0.3113 0.2451 6 120 12.5 40 NT NT NT NT NT NT NT NT NT NT 7 100 25.0 40 6.7 2.55 −1.76 0.4430 0.5716 11.6 0.65 −3.07 0.2944 0.2399 8 120 25.0 40 31.2 3.20 −6.98 0.7184 0.5725 36.1 1.30 −8.29 0.5698 0.2408 9 100 18.8 30 4.8 2.61 −1.59 0.3891 0.5771 9.7 0.71 −2.90 0.2405 0.2454 10 120 18.8 30 30.1 3.15 −7.00 0.7657 0.6234 35.0 1.25 −8.31 0.6171 0.2917 11 110 12.5 30 13.7 3.02 −4.04 0.5994 0.6069 18.6 1.12 −5.35 0.4508 0.2752 12 110 25.0 30 11.9 2.84 −2.91 0.4984 0.5942 16.8 0.94 −4.22 0.3498 0.2625 13 110 18.8 20 7.9 2.60 −1.98 0.4447 0.5884 12.8 0.70 −3.29 0.2961 0.2567 14 110 18.8 40 18.2 2.98 −4.74 0.6449 0.5952 23.1 1.08 −6.05 0.4963 0.2635 15 110 18.8 30 13.2 2.77 −3.21 0.5399 0.5698 18.1 0.87 −4.52 0.3913 0.2381 16 110 18.8 30 13.2 2.77 −3.17 0.5540 0.6054 18.1 0.87 −4.48 0.4054 0.2737 17 110 18.8 30 13.2 2.77 −3.23 0.5475 0.6018 18.1 0.87 −4.54 0.3989 0.2701 18 110 18.8 30 14.2 2.79 −3.27 0.5500 0.6051 19.1 0.89 −4.58 0.4014 0.2734 19 110 18.8 30 14.6 2.90 −3.44 0.5503 0.5925 19.5 0.99 −4.75 0.4017 0.2608 20 110 18.8 30 13.2 2.82 −3.29 0.5525 0.5980 18.1 0.92 −4.60 0.4039 0.2663 NA = not applicable NT = not testable Table 38. Master curve and FTIR data for AZ1-4.
From page 76...
... 76 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Condition/ PAV Run PAV Operating Parameters CA Master Curve 20°C Reference Temperature CCl4 FTIR Change from RTFOT Temp, °C Mass, g Time, hrs Td, °C R log ωc C=O S=O Td, °C R log ωc C=O S=O Original NA NA NA −18.3 2.02 3.78 0.1272 0.3249 NA NA NA NA NA RTFOT NA NA NA −14.3 2.26 2.93 0.1435 0.3330 0.0 0.00 0.00 0.0000 0.0000 PAV 20 hr 100 50.0 20 −8.8 2.79 1.20 0.2351 0.4097 5.5 0.53 −1.73 0.0916 0.0767 PAV 40 hr 100 50.0 40 0.4 3.38 −0.66 0.2978 0.4681 14.7 1.12 −3.59 0.1543 0.1351 1 100 12.5 20 0.4 3.28 −0.61 0.2892 0.4989 14.7 1.03 −3.54 0.1457 0.1659 2 120 12.5 20 25.0 4.45 −8.11 0.5244 0.5720 39.3 2.20 −11.04 0.3809 0.2390 3 100 25.0 20 −3.8 3.23 −0.24 0.2811 0.4939 10.5 0.97 −3.17 0.1376 0.1609 4 120 25.0 20 37.3 4.53 −8.04 0.4565 0.5636 51.6 2.27 −10.97 0.3130 0.2306 5 100 12.5 40 10.4 3.88 −3.18 0.3822 0.5527 24.7 1.62 −6.11 0.2387 0.2197 6 120 12.5 40 NT NT NT NT NT NT NT NT NT NT 7 100 25.0 40 12.6 3.72 −3.06 0.3839 0.5335 27.0 1.46 −5.98 0.2404 0.2005 8 120 25.0 40 NT NT NT NT NT NT NT NT NT NT 9 100 18.8 30 2.6 3.70 −1.88 0.3517 0.5185 17.0 1.45 −4.81 0.2082 0.1855 10 120 18.8 30 NT NT NT NT NT NT NT NT NT NT 11 110 12.5 30 19.3 4.13 −5.50 0.4665 0.5710 33.6 1.87 −8.42 0.3230 0.2380 12 110 25.0 30 19.4 4.02 −4.91 0.4297 0.5617 33.7 1.76 −7.84 0.2862 0.2287 13 110 18.8 20 8.8 3.92 −3.23 0.3734 0.5653 23.1 1.66 −6.16 0.2299 0.2323 14 110 18.8 40 30.0 4.50 −7.92 0.4970 0.5604 44.3 2.24 −10.84 0.3535 0.2274 15 110 18.8 30 20.2 4.18 −5.47 0.4593 0.5738 34.5 1.92 −8.40 0.3158 0.2408 16 110 18.8 30 22.2 4.20 −5.79 0.4511 0.5757 36.5 1.94 −8.72 0.3076 0.2427 17 110 18.8 30 23.3 4.18 −5.94 0.4514 0.5753 37.7 1.92 −8.87 0.3079 0.2423 18 110 18.8 30 23.3 4.12 −5.55 0.4604 0.5612 37.7 1.87 −8.48 0.3169 0.2282 19 110 18.8 30 SL SL SL SL SL SL SL SL SL SL 20 110 18.8 30 SL SL SL SL SL SL SL SL SL SL NA = not applicable NT = not testable SL = sample lost Table 39. Master curve and FTIR data for MN1-2.
From page 77...
... Research Approach 77   Table 40. Master curve and FTIR data for MN1-3.
From page 78...
... 78 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Table 41. Master curve and FTIR data for MN1-4.
From page 79...
... Research Approach 79   Condition/ PAV Run PAV Operating Parameters CA Master Curve 20°C Reference Temperature CCl4 FTIR Change from RTFOT Temp, °C Mass, g Time, hrs Td, °C R log ωc C=O S=O Td, °C R log ωc C=O S=O Original NA NA NA −15.1 1.44 4.16 0.2232 0.3003 NA NA NA NA NA RTFOT NA NA NA −12.4 1.59 3.63 0.2496 0.3099 0.0 0.00 0.00 0.0000 0.0000 PAV 20 hr 100 50 20 −10.3 1.86 2.69 0.3338 0.4244 2.1 0.27 −0.94 0.0842 0.1145 PAV 40 hr 100 50 40 −7.8 2.14 1.94 0.4120 0.4538 4.5 0.54 −1.70 0.1624 0.1439 1 100 12.5 20 −7.3 2.09 1.94 0.3984 0.4704 5.1 0.50 −1.70 0.1488 0.1605 2 120 12.5 20 17.9 3.64 −5.04 0.8773 0.5448 30.3 2.05 −8.68 0.6277 0.2349 3 100 25.0 20 −8.6 2.00 2.21 0.3719 0.4594 3.8 0.41 −1.42 0.1223 0.1495 4 120 25.0 20 0.0 2.98 −1.06 0.6495 0.5530 12.4 1.38 −4.69 0.3999 0.2431 5 100 12.5 40 −4.4 2.45 0.73 0.5303 0.5124 7.9 0.86 −2.91 0.2807 0.2025 6 120 12.5 40 NT NT NT NT NT NT NT NT NT NT 7 100 25.0 40 −6.2 2.40 0.82 0.5151 0.5276 6.2 0.81 −2.81 0.2655 0.2177 8 120 25.0 40 16.4 3.80 −5.12 0.8805 0.5593 28.7 2.21 −8.76 0.6309 0.2494 9 100 18.8 30 −7.1 2.22 1.49 0.4436 0.5154 5.3 0.63 −2.15 0.1940 0.2055 10 120 18.8 30 23.5 3.72 −6.01 0.8911 0.5449 35.8 2.13 −9.65 0.6415 0.2350 11 110 12.5 30 4.0 3.06 −1.53 0.7371 0.5258 16.4 1.47 −5.16 0.4875 0.2159 12 110 25.0 30 −0.5 2.76 −0.32 0.6062 0.5460 11.9 1.17 −3.95 0.3566 0.2361 13 110 18.8 20 −6.4 2.43 0.82 0.5282 0.5246 5.9 0.83 −2.82 0.2786 0.2147 14 110 18.8 40 6.4 3.25 −2.43 0.7755 0.5713 18.8 1.66 −6.06 0.5259 0.2614 15 110 18.8 30 −1.5 2.80 −0.70 0.6587 0.5609 10.8 1.21 −4.33 0.4091 0.2510 16 110 18.8 30 −1.3 2.90 −0.61 0.6630 0.5360 11.1 1.31 −4.25 0.4134 0.2261 17 110 18.8 30 −0.6 2.89 −0.87 0.6710 0.5514 11.8 1.30 −4.50 0.4214 0.2415 18 110 18.8 30 −0.9 2.87 −0.69 0.6583 0.5387 11.4 1.28 −4.32 0.4087 0.2288 19 110 18.8 30 −0.3 2.88 −0.82 0.6759 0.5265 12.1 1.28 −4.46 0.4263 0.2166 20 110 18.8 30 −0.9 2.93 −0.95 0.6548 0.5240 11.4 1.34 −4.58 0.4052 0.2141 NA = not applicable NT = not testable Table 42. Master curve and FTIR data for MN1-5.
From page 80...
... 80 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Various graphs were constructed using data in Tables 35 through 42 to map the changes in rheology and chemistry of each binder with increasing severity of PAV conditioning. The most informative graphs were plots showing the change in the rheological index (Figures  54 and 55)
From page 81...
... a. Binder AZ1-1.
From page 82...
... a. Binder MN1-2.
From page 83...
... a. Binder AZ1-1.
From page 84...
... a. Binder MN1-2.
From page 85...
... a. Binder AZ1-1.
From page 86...
... a. Binder MN1-2.
From page 87...
... Research Approach 87   0.00 0.50 1.00 1.50 2.00 2.50 -10.00 -9.00 -8.00 -7.00 -6.00 -5.00 -4.00 -3.00 -2.00 -1.00 0.00 ΔR Δlogωc AZ1-1 AZ1-2 AZ1-3 AZ1-4 MN1-2 MN1-3 MN1-4 MN1-5 Figure 60. Path length of change in rheology to the center point of the PAV operating parameters experiment (18.8 g, 110çC, 30 hrs)
From page 88...
... 88 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Binder Intercept Temp, °C Mass, g Time, hr Temp2, °C Mass2, g Time2 Temp, °C x Mass, g Time, hr x Mass, g Temp, °C x Time R 2 AZ1-1 −4.34739 0.075706 0.02178 −0.00031 −0.00003 −0.00019 96.4 AZ1-2 −2.89778 0.051930 0.014874 −0.00025 −0.00044 0.00003 87.9 AZ1-3 −2.82837 0.048085 0.00423 −0.00022 84.6 AZ1-4 −0.04491 0.01497 −0.00022 −0.00023 0.00007 68.8 MN1-2 −4.34739 0.075706 0.02178 −0.00031 −0.00003 −0.00019 96.4 MN1-3 −3.00861 0.055169 0.014874 −0.00025 −0.00043 0.00003 87.9 MN1-4 −2.82837 0.048085 0.012742 −0.00019 −0.00001 −0.00011 91.6 MN1-5 −2.42692 0.041219 0.014168 −0.00016 −0.00011 85.0 Table 45. Sulfoxide absorbance response surface models.
From page 89...
... a. Binder AZ1-1.
From page 90...
... a. Binder MN1-2.
From page 91...
... a. Binder AZ1-1.
From page 92...
... a. Binder MN1-2.
From page 93...
... a. Binder AZ1-1.
From page 94...
... a. Binder MN1-2.
From page 95...
... Research Approach 95   Field Cores The Christensen-Anderson master curve parameters and the carbonyl absorbance for binder recovered from the field cores are presented in Table 46 for the cores from the Arizona ARC validation sections and Table 47 for the cores from the Minnesota ARC validation sections. These tables include the measured data for slices from three depths and the change in the master curve parameters and the carbonyl absorbance from the RTFOT condition.
From page 96...
... 96 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging example is all Minnesota sections have greater carbonyl absorbance at a depth of 3.75 in for the 5-year cores compared to the 11-year cores (Figure 68) , which is not rational and likely due to variability in the data.
From page 97...
... a. Binder AZ1-1.
From page 98...
... a. Binder MN1-2.
From page 99...
... a. Binder AZ1-1.
From page 100...
... a. Binder MN1-2.
From page 101...
... Research Approach 101   The negative change in the rheological index (field-aged rheological index less than RTFOT rheological index) for some of the MN1-2 data suggests that all the polymer may not have been extracted and recovered.
From page 102...
... a. Binder AZ1-1.
From page 103...
... a. Binder MN1-2.
From page 104...
... 104 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Optimization The response surface models were used in an optimization to select the PAV operating parameters that best matched the field data for each validation site. The objective function for the optimization was to minimize the sum of the square of the relative error between PAV-conditioned binder and the field-aged binder, as defined by Equation 7.
From page 105...
... Research Approach 105   Site Slice, in Criteria PAV Operating Parameters Average Relative Error, % Temperature, °C Mass, g Time, hr ∆log ωc ∆(C=O)
From page 106...
... 106 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging b. Carbonyl absorbance.
From page 107...
... Research Approach 107   a. Crossover frequency.
From page 108...
... 108 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging binders to those for binder recovered from cores from in-service pavements. The rheological properties used were the change in the Christensen-Anderson master curve parameters from the (RTFOT)
From page 109...
... Research Approach 109   State Age Storage Time, yrs MAAT, °C Air Voids, % VMA, % VBE, % Binder Grade MS 11.9 11.7 17.0 3.7 15.5 11.8 AC-30 NY 13.2 11.9 8.6 13.3 23.7 10.4 AC-10 Table 50. Cores for studying storage aging.
From page 110...
... a. Carbonyl absorbance.
From page 111...
... a. Carbonyl absorbance.
From page 112...
... 112 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging sulfoxide absorbance, crossover frequency, and rheological index as a function of offset from the center of the core for the Mississippi and New York cores, respectively. These figures show somewhat different results.
From page 113...
... Research Approach 113   Property Core Depth, in Intercept Offset Slope Offset from Center, in Explained Variance C=O Absorbance MS 0.25 0.4427 0 0.810.75 0.3189 0 1.25 0.3313 0 NY 0.25 0.4536 0.0084 0.850.75 0.4048 0.0084 1.25 0.3532 0.0084 C=O + S=O Absorbance MS 0.25 1.0593 0 0.840.75 1.3357 0 1.25 0.8978 0 NY 0.25 1.0915 0.0117 0.870.75 0.9982 0.0117 1.25 0.9252 0.0117 Log ωc MS 0.25 −0.02 0 0.930.75 1.25 0 1.25 1.36 0 NY 0.25 −0.22 −0.075 0.890.75 0.56 −0.075 1.25 1.02 −0.075 R MS 0.25 2.35 0 0.950.75 2.00 0 1.25 1.96 0 NY 0.25 2.28 0 0.540.75 2.21 0 1.25 2.12 0 Table 53. Summary of statistical analysis from the storage aging study.
From page 114...
... 114 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging The selected pavements include new, full-depth construction and overlays of existing asphalt concrete and Portland cement concrete pavements. The thickness of the asphalt concrete placed during the LTPP construction ranged from 3.7 in to 10.5 in.
From page 115...
... Research Approach 115   To determine appropriate PAV conditioning temperatures for each pavement, the original binder samples were first RTFOT-conditioned. The RTFOT-conditioned residue was then further conditioned in the PAV using 12.5 g in standard PAV pans, 20 hours conditioning time, and 2.1 MPa air pressure.
From page 116...
... State/ Province LTPP ID Route Construction Date Chip Seal Date Coring Date Time in Service, yrs Time in Storage, yrs Latitude Longitude Elevation, ft AL 010102 US-280 westbound 03/01/1993 07/21/2005 12.4 14.0 32.63570 −85.29572 680 AR2 050804 US-65 southbound 12/01/1997 03/01/2005 7.3 14.4 34.19870 −91.96281 210 CA 060603 I-5 northbound 05/06/1992 10/20/2005 13.5 13.8 41.35826 −122.35965 3917 IL 170603 I-57 northbound 05/24/1990 04/28/2006 15.9 13.3 39.94639 −88.30302 690 IN 180603 US-31 northbound 06/11/1990 04/30/2003 12.9 16.3 41.18426 −86.24781 866 IA 190108 US-61 southbound 11/01/1992 04/27/2007 14.5 12.3 40.68581 −91.25078 662 ME 230504 I-95 northbound 06/15/1995 08/05/2004 9.1 15.0 45.06010 −68.68832 140 MD 240507 US-15 northbound 03/31/1992 06/03/2005 13.2 14.2 39.30141 −77.52040 379 MN 270504 US-2 westbound 09/15/1990 06/10/2005 14.7 14.2 47.52810 −95.19382 1469 MS 280805 State-315 northbound 01/01/1996 11/13/2007 11.9 11.7 34.44519 −89.87261 276 MO 290507 US-65 northbound 08/17/1998 03/31/2006 7.6 13.3 36.51644 −93.22952 1343 MT 300806 State-273 northbound 06/01/1994 09/01/2003 06/01/2007 9.3 12.2 46.14162 −112.89166 5091 NJ 340507 I-195 westbound 07/20/1992 03/05/2006 13.6 13.4 40.17780 −74.51911 123 NM 350802 I-10 frontage eastbound 11/01/1996 03/31/2006 9.4 13.3 32.19354 −108.29852 4573 NY 360802 State-947A eastbound 08/01/1994 09/27/2007 13.2 11.9 43.35552 −77.92370 253 NC 370802 1245 northbound 12/10/1997 08/25/2006 8.7 12.9 34.80880 −77.66349 70 OK 400603 I-35 southbound 08/08/1992 08/29/2006 14.1 12.9 36.71348 −97.34595 1021 PA 420608 I-80 westbound 09/03/1992 05/06/2005 12.7 14.2 40.98949 −77.81956 1267 SD 460804 State-1804 southbound 06/01/1993 08/01/2007 14.2 12.0 45.92797 −100.40881 1684 TX 480802 2223 eastbound 07/01/1996 06/27/2007 11.0 12.1 30.77167 −96.40077 386 WI 550806 State-29 eastbound 11/30/1997 08/12/2005 7.7 14.0 44.88162 −89.31584 1310 ALB 810504 Provincial-16 westbound 09/30/1990 06/16/2006 15.7 13.1 53.58277 −116.03169 2887 MAN 830504 Provincial-1 westbound 09/08/1989 06/01/2004 09/15/2006 14.7 12.9 49.65974 −96.29205 956 CA2 06A806 Sycamore St. northbound 09/01/1999 06/05/2007 7.8 12.2 37.41774 −120.76171 120 TX2 48A504 US-175 southbound 10/16/1991 08/21/2007 15.9 12.0 32.61340 −96.40476 455 Table 56.
From page 117...
... Research Approach 117   construction date to the date the chip seal was placed. The chip seal was removed by diamond sawing and not included in the testing.
From page 118...
... 118 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging of the section listed in Table 56. The pavement temperatures were calculated for the surface of the pavement.
From page 119...
... Research Approach 119   Table 59. Long-term conditioning calibration database climatic spreadsheet, LTPPBind Online data.
From page 120...
... 120 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging State/ Province LTPP Section Aggregate Bulk Specific Gravity Aggregate Water Absorption, % Aggregate Gradation, % Passing Sieve Size in mm, % Coarse Fine Combined Coarse Fine 25.0 19.0 12.5 9.5 4.75 2.36 1.18 0.60 0.30 0.15 0.075 AL 010102 2.625 2.728 2.673 0.48 0.22 100.0 98.4 90.4 80.0 60.1 46.5 35.1 25.8 17.1 10.5 6.0 AR2 050804 2.610 2.603 2.607 0.53 0.43 100.0 100.0 93.0 85.3 65.0 47.0 34.3 25.8 17.7 11.4 7.1 CA 060603 2.709 2.696 2.703 0.33 0.54 100.0 100.0 91.3 80.5 59.5 45.2 30.7 21.0 14.7 10.7 8.0 IL 170603 2.660 2.650 2.656 0.97 1.67 100.0 100.0 100.0 99.2 62.3 40.1 28.1 20.5 12.8 8.9 7.5 IN 180603 2.410 2.637 2.519 2.37 1.17 100.0 100.0 100.0 95.8 60.6 48.2 37.9 27.7 12.8 5.7 4.1 IA 190108 2.492 2.624 2.539 3.72 0.97 100.0 99.5 82.3 73.8 52.9 35.9 27.3 19.9 9.9 6.8 6.1 ME 230504 2.680 2.677 2.679 0.60 0.60 100.0 100.0 92.2 81.3 49.9 35.8 24.8 17.2 12.4 9.7 7.7 MD 240507 2.662 2.676 2.666 1.09 0.52 100.0 100.0 97.8 88.9 48.9 31.9 23.2 17.6 11.8 8.8 7.4 MN 270504 2.683 2.643 2.661 0.70 0.70 100.0 100.0 91.6 82.3 68.1 56.9 43.8 27.9 12.3 6.4 4.3 MS 280805 2.550 2.633 2.585 0.87 0.60 100.0 100.0 100.0 94.4 59.9 41.9 29.6 21.0 12.1 8.9 7.0 MO 290507 2.654 2.636 2.647 0.62 0.94 100.0 100.0 98.6 88.4 60.8 39.5 25.5 18.2 13.1 9.5 7.3 MT 300806 2.683 2.653 2.674 0.63 0.83 100.0 100.0 80.4 64.5 39.7 29.6 23.5 19.5 15.9 12.2 8.4 NJ 340507 2.910 2.827 2.873 0.60 1.03 100.0 97.0 85.1 76.4 55.7 45.0 36.1 28.7 18.4 10.3 6.3 NM 350802 2.223 2.443 2.313 4.10 1.97 100.0 97.7 82.0 72.7 52.8 40.9 29.2 20.7 14.2 10.1 7.3 NY 360802 2.637 2.600 2.619 0.47 1.07 100.0 100.0 100.0 99.4 83.0 49.1 32.3 23.7 17.5 12.8 9.7 NC 370802 2.415 2.637 2.549 3.72 0.60 100.0 100.0 100.0 94.9 75.8 60.2 50.6 44.8 34.4 9.8 5.9 OK 400603 2.590 2.573 2.584 1.75 0.80 100.0 100.0 96.6 91.9 61.1 35.5 23.9 17.2 11.7 8.6 7.2 PA 420608 2.663 2.737 2.697 1.17 1.00 100.0 100.0 100.0 99.4 64.3 46.2 28.4 18.4 12.6 9.5 7.2 SD 460804 2.633 2.580 2.608 0.60 1.37 100.0 100.0 92.5 81.6 60.6 47.3 35.8 25.3 13.0 7.0 4.8 TX 480802 2.513 2.540 2.524 0.87 1.40 100.0 100.0 99.7 92.1 65.1 41.7 31.0 25.2 18.2 11.6 7.0 WI 550806 2.630 2.633 2.632 0.67 0.90 100.0 100.0 97.4 94.3 77.2 54.8 39.0 27.1 13.8 8.1 6.0 ALB 810504 2.620 2.587 2.605 0.67 1.37 100.0 100.0 91.4 80.0 59.5 43.5 34.2 28.2 19.3 11.9 7.7 MAN 830504 2.603 2.623 2.614 1.13 1.13 100.0 100.0 93.4 83.5 64.3 52.8 42.7 32.8 22.1 10.3 6.0 CA2 06A806 2.650 2.613 2.638 0.70 0.69 100.0 96.0 75.5 65.8 43.2 31.9 25.6 21.3 14.7 8.7 5.3 TX2 48A504 2.827 2.620 2.735 0.57 0.93 100.0 100.0 87.1 77.6 54.4 44.5 36.9 31.3 24.9 11.8 6.0 Table 60. Long-term conditioning calibration database, surface layer volumetric properties spreadsheet, aggregate properties.
From page 121...
... Research Approach 121   LTPP Section Aggregate Bulk Specific Gravity Aggregate Water Absorption, % Aggregate Gradation, % Passing Sieve Size in mm, % Coarse Fine Combined Coarse Fine 25.0 19.0 12.5 9.5 4.75 2.36 1.18 0.60 0.30 0.15 0.075 AL 010102 2.815 2.668 2.776 0.33 0.48 100.0 88.4 67.1 53.5 31.8 26.2 23.0 18.4 11.9 7.6 5.4 AR2 050804 2.607 2.600 2.604 0.50 0.47 97.9 85.5 70.2 61.7 45.5 34.1 25.9 20.2 14.3 9.3 5.8 CA 060603 IL 170603 2.610 2.593 2.605 1.07 1.40 100.0 98.7 89.2 82.2 50.2 31.5 21.7 16.1 11.8 8.6 7.2 IN 180603 2.430 2.640 2.501 2.43 1.37 100.0 98.9 81.4 70.2 45.8 34.0 27.0 20.3 11.0 6.1 4.2 IA 190108 ME 230504 MD 240507 MN 270504 MS 280805 MO 290507 MT 300806 NJ 340507 NM 350802 NY 360802 2.657 2.610 2.639 0.40 1.07 100.0 96.4 91.3 84.8 59.5 38.9 27.8 21.0 15.1 10.2 7.4 NC 370802 2.415 2.587 2.481 3.72 1.20 100.0 97.3 79.7 68.0 47.0 38.4 32.1 26.4 17.3 7.1 4.0 OK 400603 PA 420608 SD 460804 TX 480802 WI 550806 ALB 810504 MAN 830504 CA2 06A806 TX2 48A504 State/ Province Table 62. Long-term conditioning calibration database, second layer volumetric properties spreadsheet, aggregate properties.
From page 122...
... 122 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging State/ Province LTPP Section Specific Gravity Asphalt Content, wt % Voids in Mineral Aggregate, vol % Voids Filled with Asphalt, vol % Air Voids, vol % Effective Binder Content, vol %Bulk Maximum Effective AL 010102 2.542 2.614 2.795 4.05 12.1 77.3 2.8 9.4 AR2 050804 2.341 2.465 2.628 4.27 14.0 63.9 5.0 8.9 CA 060603 IL 170603 2.306 2.491 2.679 4.72 15.6 52.5 7.4 8.2 IN 180603 2.148 2.492 2.681 4.73 18.2 24.1 13.8 4.4 IA 190108 ME 230504 MD 240507 MN 270504 MS 280805 MO 290507 MT 300806 NJ 340507 NM 350802 NY 360802 2.294 2.532 2.733 4.81 17.2 45.5 9.4 7.8 NC 370802 2.115 2.389 2.570 5.06 19.1 39.8 11.5 7.6 OK 400603 PA 420608 SD 460804 TX 480802 WI 550806 ALB 810504 MAN 830504 CA2 06A806 TX2 48A504 Table 63. Long-term conditioning calibration database, second layer volumetric properties spreadsheet, mixture properties.
From page 123...
... State/ Province LTPP Section 0.0 to 0.5 in Slice 0.5 in to 1.0 in Slice 1.5 in to 2.0 in Slice Td °C ωc rad/sec R G*
From page 124...
... 124 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging State/ Province LTPP Section 0 to 0.5 in Slice 0.5 in to 1.0 in Slice 1.5 in to 2.0 in Slice C=O S=O C=O + S=O C=O S=O C=O + S=O C=O S=O C=O + S=O AL 010102 0.4806 0.5503 1.0309 0.3546 0.5366 0.8912 0.2770 0.4405 0.7175 AR2 050804 0.5608 0.5244 1.0852 0.5034 0.5334 1.0368 0.4871 0.5416 1.0287 CA 060603 0.7462 0.8479 1.5941 0.6936 0.8049 1.4985 0.6722 0.6289 1.3011 IL 170603 0.5000 0.6636 1.1636 0.4457 0.6844 1.1301 0.4169 0.6315 1.0484 IN 180603 0.5066 0.5029 1.0095 0.4656 0.5240 0.9896 0.4273 0.5674 0.9947 IA 190108 0.5108 0.5270 1.0378 0.4690 0.5191 0.9881 0.4725 0.5167 0.9892 ME 230504 0.2977 0.4373 0.7350 0.2599 0.4449 0.7048 0.2539 0.4238 0.6777 MD 240507 0.4257 0.5603 0.9860 0.3347 0.5087 0.8434 0.3161 0.5058 0.8219 MN 270504 0.4140 0.5422 0.9562 0.3660 0.5264 0.8924 0.3773 0.5543 0.9316 MS 280805 0.4834 0.5913 1.0747 0.3793 0.6028 0.9821 0.3887 0.5128 0.9015 MO 290507 0.4996 0.5716 1.0712 0.4641 0.5539 1.0180 0.4673 0.5206 0.9879 MT 300806 0.3467 0.5223 0.8690 0.2139 0.4099 0.6238 0.3111 0.5253 0.8364 NJ 340507 0.6777 0.5661 1.2438 0.5862 0.6280 1.2142 0.5788 0.5846 1.1634 NM 350802 0.5111 0.3958 0.9069 0.4958 0.3983 0.8941 0.4774 0.3909 0.8683 NY 360802 0.5529 0.5937 1.1466 0.4601 0.5672 1.0273 0.4002 0.4651 0.8653 NC 370802 0.4123 0.5490 0.9613 0.3727 0.5069 0.8796 0.3745 0.4402 0.8147 OK 400603 0.7283 0.4449 1.1732 0.5547 0.4162 0.9709 0.4577 0.4058 0.8635 PA 420608 0.2690 0.4639 0.7329 0.2405 0.4563 0.6968 0.2435 0.4623 0.7058 SD 460804 0.5678 0.5103 1.0781 0.6473 0.5146 1.1619 0.5322 0.5203 1.0525 TX 480802 0.5232 0.4459 0.9691 0.4893 0.4462 0.9355 0.4786 0.4485 0.9271 WI 550806 0.4641 0.5054 0.9695 0.4139 0.5081 0.9220 0.3988 0.5049 0.9037 ALB 810504 0.4403 0.6700 1.1103 0.3796 0.6451 1.0247 0.3701 0.6323 1.0024 MAN 830504 0.4243 0.5536 0.9779 0.3907 0.5844 0.9751 0.3747 0.5871 0.9618 CA2 06A806 0.9293 0.5551 1.4844 0.8427 0.5424 1.3851 0.8802 0.5638 1.4440 TX2 48A504 0.3810 0.4320 0.8130 0.2040 0.3506 0.5546 0.2621 0.4170 0.6791 Table 65. Long-term conditioning calibration database: recovered binder FTIR spreadsheet.
From page 125...
... Research Approach 125   State/ Province LTPP Section 85°C 100°C 115°C Td, °C ωc, rad/sec R Td, °C ωc, rad/sec R Td, °C ωc, rad/sec R AL 010102 −5.12 8.24 2.54 −3.88 0.65 2.83 17.64 0.000020 3.65 AR2 050804 −4.94 71.61 1.88 −4.32 17.60 2.08 3.01 0.276191 2.58 CA 060603 −3.66 114.65 1.86 −1.64 6.25 2.15 14.14 0.000869 3.05 IL 170603 −3.28 14.48 2.11 −1.62 0.94 2.47 21.58 0.000006 3.30 IN 180603 −5.58 19.09 2.16 3.42 0.69 2.51 20.84 0.000009 3.33 IA 190108 −4.62 38.12 2.20 −2.79 3.18 2.50 15.18 0.000600 3.22 ME 230504 −7.00 113.27 2.17 −5.62 17.03 2.38 6.37 0.013702 3.20 MD 240507 −6.66 15.17 2.43 −4.92 1.15 2.71 21.02 0.000002 3.67 MN 270504 −3.40 35.84 2.32 −1.00 0.71 2.82 21.05 0.000042 3.51 MS 280805 −5.05 35.11 1.97 −3.79 4.06 2.24 14.74 0.000799 3.02 MO 290507 −5.04 58.96 1.85 −4.62 8.60 2.07 19.25 0.000965 2.66 MT 300806 −4.59 57.03 2.09 −3.06 4.36 2.42 12.60 0.001722 3.09 NJ 340507 −6.66 127.44 1.80 −4.82 15.99 2.06 14.02 0.000414 3.04 NM 350802 −6.08 55.97 2.40 −5.01 7.28 2.69 3.30 0.230757 3.18 NY 360802 −4.51 27.62 2.09 −2.97 1.25 2.50 21.55 0.000029 3.14 NC 370802 −5.72 6.12 2.49 2.17 0.24 2.90 23.09 0.000003 3.61 OK 400603 −2.64 4.81 2.52 5.27 0.64 2.69 14.06 0.001629 3.17 PA 420608 −6.90 25.64 2.34 −5.17 2.16 2.57 12.07 0.000361 3.42 SD 460804 −7.29 182.21 2.09 −5.65 17.35 2.38 11.08 0.002335 3.19 TX 480802 −1.77 5.84 2.16 7.94 0.74 2.30 14.66 0.000705 2.99 WI 550806 −6.86 71.97 2.11 −5.54 5.86 2.43 17.56 0.000089 3.28 ALB 810504 −8.36 541.51 1.70 −5.95 68.92 1.91 6.78 0.025790 2.71 MAN 830504 −10.26 188.81 2.09 −7.77 10.28 2.44 18.77 0.000013 3.58 CA2 06A806 1.94 73.99 1.39 2.25 11.58 1.55 7.33 0.255286 2.01 TX2 48A504 −3.64 47.03 2.14 −3.00 5.36 2.42 5.72 0.025447 3.05 Table 67. Long-term conditioning calibration database: 12.5 g, 20-hr PAV conditioning master curve spreadsheet, 25çC reference temperature.
From page 126...
... 126 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging A different approach was used for the data from the calibration experiment. First, the master curve parameters for the laboratory-conditioned binder were plotted as a function of temperature, as shown in Figure 81 for the Missouri binder.
From page 127...
... Research Approach 127   Table 69. Long-term conditioning calibration database 12.5 g, 20-hr PAV conditioning FTIR spreadsheet.
From page 128...
... 128 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging a. Defining temperature.
From page 129...
... Research Approach 129   LTPP Section Equivalent PAV Temperature °C Explained Variance Unconstrained Optimization Laboratory Temperature Relationships, Constrained Optimization G* Phase Angle G*
From page 130...
... 130 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging LTPP Section Equivalent PAV Temperature, °C Explained Variance Unconstrained Optimization Laboratory Temperature Relationships, Constrained Optimization G* Phase Angle G*
From page 131...
... Research Approach 131   a. Constrained optimization using laboratory-conditioned temperature relationships for Td, ωc, and R
From page 132...
... 132 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Figure 84. Plots of FTIR absorbances as a function of conditioning temperature for 12.5 g, 20-hr PAV conditioning for the Missouri section.
From page 133...
... Research Approach 133   Figure 85. Comparison of equivalent PAV temperatures based on carbonyl absorbance and sulfoxide absorbance.
From page 134...
... 134 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging a. Carbonyl to rheology.
From page 135...
... Research Approach 135   temperature based on changes in rheological properties. The first step in the detailed analysis was to perform a graphical analysis to determine the factors affecting the equivalent PAV temperatures.
From page 136...
... 136 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging temperature for the 0 to 0.5 in slice as a function of various measures of temperature. The mean annual air temperature, the 98 percent reliability high pavement temperature, and the average of the 98 percent reliability high and low pavement temperatures appear to be better indicators of the effect of temperature than does cumulative degree days.
From page 137...
... a. Mean annual air temperature.
From page 138...
... 138 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Figure 91. Effect of shortwave radiation on equivalent PAV temperature.
From page 139...
... a. Air void content.
From page 140...
... 140 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Figure 94 compares plots of the equivalent PAV temperature for the 0 to 0.5 in slice as a function of various gradation parameters and apparent film thickness. The equivalent PAV temperature is not strongly related to any of the gradation parameters.
From page 141...
... a. Percent passing 4.75 mm sieve.
From page 142...
... 142 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging T EIPAV ( )
From page 143...
... Research Approach 143   gradients or other changes with depth. The lowest slice of four of the pavements and the second and lowest slice for two of the pavements used mixes that were different than the surface mix and had different air void contents.
From page 144...
... 144 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging a. 0 to 0.5 in slice.
From page 145...
... Research Approach 145   Property T Avg 98% High and Low Temp, °C t Time in Service, yrs VTM Air Void Content, % B Binder, Arrhenius Exponent d Depth, in Minimum 2.78 7.25 0.86 8644.38 0.25 Median 15.98 12.89 6.02 6763.98 0.75 Maximum 30.20 15.94 13.30 4006.62 1.75 Table 76. Data range and values used in sensitivity analysis.
From page 146...
... 146 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Figure 97. Sensitivity of 12.5 g, 20-h, 2.1 MPa equivalent PAV temperature model to pavement age (yr)
From page 147...
... Research Approach 147   Figure 99. Sensitivity of 12.5 g, 20-hr, 2.1 MPa equivalent PAV temperature model to binder Arrhenius exponent.
From page 148...
... 148 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging The Texas-2 section with air void content of 0.86 percent had the lowest equivalent PAV temperature but was in one of the hottest environments. The Pennsylvania section with air voids of 2.86 percent also had lower equivalent PAV temperatures than expected for the climate at this site.
From page 149...
... Research Approach 149   1 1 (11)
From page 150...
... 150 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Sensitivity Experiment Objective The objectives of the sensitivity experiment were to: (1) confirm the practicality of using 12.5 g, 20-hr, 2.1 MPa long-term conditioning for a range of binders, and (2)
From page 151...
... Research Approach 151   Results and Analysis Test results are presented in Table 79 for the AASHTO M 320 and AASHTO M 332 intermediate temperature parameter G* • sind and Table 80 for the low temperature creep stiffness and m-value.
From page 152...
... Conditioning G* ·sinδ, kPa at Binder Mass, g Time, hr Temp, °C 4°C 7°C 10°C 13°C 16°C 19°C 22°C 25°C 28°C 31°C 34°C 37°C 40°C AAK 50 20 100 6360 4300 12.5 20 105 5500 4010 AAM 50 20 100 5000 3530 12.5 20 105 5970 4410 AZ1-1 50 20 100 5010 3690 12.5 20 110 5330 4160 AZ1-3 50 20 100 5030 3550 12.5 20 110 5540 4270 MN1-2 50 20 100 5510 3710 12.5 20 95 5120 3660 MN1-4 50 20 100 5700 4090 12.5 20 95 5160 3770 MN1-5 50 20 100 7740 4980 12.5 20 95 5990 3950 ME3 50 20 100 5100 3540 12.5 20 100 5170 3720 AC1928 50 20 100 6450 4720 12.5 20 100 5950 4510 AC1879 50 20 100 6730 4630 12.5 20 105 5110 3850 Table 79.
From page 153...
... Conditioning BBR Stiffness, MPa at BBR m-value, at Binder Mass, g Time, hr Temp, °C 6°C 0°C −6°C −12°C −18°C −24°C − 30°C 6°C 0°C −6°C −12°C −18°C −24°C −30°C AAK 50 20 100 150 342 0.376 0.313 50 40 100 192 392 0.327 0.273 12.5 20 105 139 259 0.323 0.292 AAM 50 20 100 181 357 0.300 0.256 50 40 100 88.7 199 0.32 0.272 12.5 20 105 104 197 0.302 0.277 AZ1-1 50 20 100 80.6 157 0.321 0.292 50 40 100 44.6 89.4 0.345 0.297 12.5 20 110 54.6 102 0.305 0.277 AZ1-3 50 20 100 157 321 0.341 0.284 50 40 100 197 366 0.304 0.26 12.5 20 110 78.8 147 0.321 0.283 MN1-2 50 20 100 279 557 0.318 0.266 50 40 100 153 310 0.323 0.288 12.5 20 95 150 328 0.327 0.298 MN1-4 50 20 100 113 244 0.331 0.289 50 40 100 65.0 137 0.338 0.299 12.5 20 95 127 253 0.319 0.281 MN1-5 50 20 100 246 598 0.359 0.269 50 40 100 271 606 0.336 0.262 12.5 20 95 261 619 0.342 0.275 ME3 50 20 100 194 407 0.329 0.280 50 40 100 116 240 0.345 0.296 12.5 20 100 233 536 0.301 0.259 AC1928 50 20 100 141 281 0.302 0.285 50 40 100 44.1 83.1 0.304 0.288 12.5 20 100 48.4 88.7 0.306 0.287 AC1879 50 20 100 181 397 0.340 0.278 50 40 100 230 387 0.303 0.263 12.5 20 105 136 270 0.317 0.271 Table 80. AASHTO M 320 and AASHTO M 332 low-temperature data for the sensitivity experiment binders.
From page 154...
... 154 Asphalt Binder Aging Methods to Accurately Reflect Mixture Aging Binder Continuous Grade 50 g, 20 hr 12.5 g, 20 hr AAK-1 20.8 28.9 AAM-1 19.0 20.1 AZ1-1 22.0 25.8 AZ1-3 28.1 38.2 MN1-2 10.7 13.2 MN1-4 11.2 13.3 MN1-5 16.0 17.3 ME3 16.2 19.3 AC1928 6.4 8.9 AC1879 21.4 28.2 Table 81. Intermediate temperature continuous grade data for the sensitivity experiment binders.

Key Terms



This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.