Skip to main content

Currently Skimming:

Handling Genetic Data in the Laboratory
Pages 11-17

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 11...
... But as the time for serious sequencing approached, genome researchers noticed that almost all the DNA they would be working with was copied from the DNA of just four donors, three men and a woman, and the identities of at least a couple of them were known because they worked at two of the labs providing the DNA for the sequencing effort. To make matters worse, at least two of the four were apparently not told that their genetic sequences were to be made public, so they had never given their consent to this use of their genes.
From page 12...
... The Act forbids government agencies (and their researchers) from maintaining secret files of any type on individuals, noted Sherri Bale, a genetic researcher at the National Institute of Arthritis, Musculoskeletal and Skin Diseases, but genetic research demands a certain amount of discreteness.
From page 13...
... The Clinical Laboratory Improvement Amendments of 1988, or CLIA, offers a different set of problems for genetic researchers. To ensure the clinical value and a minimal quality of precision and accuracy of clinical lab work around the country, the Act imposes standards on all clinical laboratories.
From page 15...
... In the same vein, David Kern of the American Association of Medical Colleges argued that for many types of studies it is vital to have longitudinal data information that is accumulated over time, usually years or even decadesand that this is impossible if the data are made anonymous by destroying links to the subjects' identity and medical records. Suppose, for instance, a researcher studying a collection of tissue samples from breast tumors has discovered a particular genetic marker (a stretch of DNA used to identify genes)
From page 16...
... As Barbara Handelin, a genome consultant for private industry, explained it, predictive or prognostic medicine will tailor treatments for a particular patient according to that patient' s genetic makeup. To that end, she said, researchers are now trying to understand such things as "why people respond or do not respond to certain drugs or to certain kinds of therapy, why people have adverse reactions to drugs, and how we can better define cancers." So doctors of the future may speak to their patients like this: "I want to give you this drug but before I do we are going to have to do some kind of genetic profiling on you because we know that there are three groups in the population and if you are in Group X you are going to have a very bad reaction to it so clearly I am not going to give it to you.
From page 17...
... Carol Dahl of the National Cancer Institute summed it up this way: "Are there technologies out there that will enable us to encrypt information to allow us to use it in a prospective way for studies in research while protecting that information from incorporation into medical records and from insurance companies gaining access? Clearly encryption is not perfect, but there are industries out there in defense and banking that have spent a lot of money trying to make it as secure as possible." If such encryption technologies were put to work in genetic research, she said, "we might be able to actually protect patients in research studies rather than looking for legislative ways of solving our problems."


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.