Current von Neumann style computing is energy inefficient and bandwidth limited as information is physically shuttled via electrons between processor, short term non-volatile memory, and long-term storage. Biologically inspired neuromorphic computing, with its inherent autonomous learning capabilities and much lower power requirements based on analog processing, is seen as an avenue for overcoming these limitations. The development of nanoelectronic "memory resistors", or memristors, is essential to neuromorphic architectures as they allow logic-based elements for information processing to be combined directly with nonvolatile memory for efficient emulation of neurons and synapses found in the brain. Memristors are typically composed of a switchable material with nonlinear hysteretic behavior sandwiched between two conducting encoding elements. The design, dynamic control, scaling and fundamental understanding of these materials is essential for establishing memristive devices.
To explore the state-of-the-art in the materials fundamentally underlying memristor technologies: their science, their mechanisms and their functional imperatives to realize neuromorphic computing machines, the National Academies of Sciences, Engineering, and Medicine's Board on Physics and Astronomy convened a workshop on February 28, 2020. This publication summarizes the presentation and discussion of the workshop.
Table of Contents |
skim chapter | |
---|---|---|
Front Matter | i-xii | |
1 Introduction | 1-2 | |
2 Workshop Plenaries | 3-46 | |
3 Panel Discussion | 47-54 | |
Appendixes | 55-56 | |
Appendix A: Statement of Task | 57-57 | |
Appendix B: Workshop Agenda | 58-58 | |
Appendix C: Registered Workshop Participants | 59-62 | |
Appendix D: Speaker and Planning Committee Biographical Information | 63-66 | |
Appendix E: Acronyms | 67-68 |
The National Academies Press and the Transportation Research Board have partnered with Copyright Clearance Center to offer a variety of options for reusing our content. You may request permission to:
For most Academic and Educational uses no royalties will be charged although you are required to obtain a license and comply with the license terms and conditions.
For information on how to request permission to translate our work and for any other rights related query please click here.
For questions about using the Copyright.com service, please contact:
Copyright Clearance Center
22 Rosewood Drive
Danvers, MA 01923
Tel (toll free): 855/239-3415 (select option 1)
E-mail: info@copyright.com
Web: https://www.copyright.com
Loading stats for Frontiers in Memristive Materials for Neuromorphic Processing Applications: Proceedings of a Workshop...