National Academies Press: OpenBook
« Previous: Chapter 19: Future of the North American Carbon Cycle
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2018. Review of the Draft Second State of the Carbon Cycle Report (SOCCR2). Washington, DC: The National Academies Press. doi: 10.17226/25045.
×

References

Anderegg, W. R. L., J. W. Prall, J. Harold, et al. 2010. Expert credibility in climate change. Proceedings of the National Academy of Sciences of the United States of America 107(27):12107-12109. DOI: 10.1073/pnas.1003187107.

Anderson-Teixeira, K. J., P. K. Snyder, T. E. Twine, et al. 2012. Climate-regulation services of natural and agricultural ecoregions of the Americas. Nature Climate Change 2(3):177-181. DOI: 10.1038/nclimate1346.

Baehr, M. M., and M. D. DeGrandpre. 2002. Under-ice CO2 and O2 variability in a freshwater lake. Biogeochemistry 61(1):95-113. DOI: 10.1023/a:1020265315833.

Barros, N., J. J. Cole, L. J. Tranvik, et al. 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience 4(9):593-596. DOI: 10.1038/ngeo1211.

Bastviken, D., J. Cole, M. Pace, et al. 2004. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles 18(4). DOI: 10.1029/2004gb002238.

Bernacchi, C. J., S. E. Hollinger, and T. Meyers. 2005. The conversion of the corn/soybean ecosystem to no-till agriculture may result in a carbon sink. Global Change Biology 11(11):1867-1872. DOI: 10.1111/j.1365-2486.2005.01050.x.

Black, C. K., S. C. Davis, T. W. Hudiburg, et al. 2017. Elevated CO2 and temperature increase soil C losses from a soybean–maize ecosystem. Global Change Biology 23(1):435-445. DOI: 10.1111/gcb.13378.

Bloom, A. A., W. K. Bowman, M. Lee, et al. 2017. A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0). Geoscientific Model Development 10(6):2141-2156. DOI: 10.5194/gmd-10-2141-2017.

Bonan, G. B., and S. C. Doney. 2018. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 359(6375):533. DOI: 10.1126/science.aam8328.

Bruhwiler, L. M., S. Basu, P. Bergamaschi, et al. 2017. U.S. CH4 emissions from oil and gas production: Have recent large increases been detected? Journal of Geophysical Research 122(7):4070-4083. DOI: 10.1002/2016JD026157.

Burke, M., S. M. Hsiang, and E. Miguel. 2015a. Climate and Conflict. Annual Review of Economics 7(1):577-617. DOI: 10.1146/annurev-economics-080614-115430.

Burke, M., S. M. Hsiang, and E. Miguel. 2015b. Global non-linear effect of temperature on economic production. Nature 527(7577):235-239. DOI: 10.1038/nature15725.

Canada Committee on Ecological Land Classification; National Wetland Working Group. 1988. Wetlands of Canada. Ottawa: Environment Canada.

Caspersen, J. P., S. W. Pacala, J. C. Jenkins, et al. 2000. Contributions of land-use history to carbon accumulation in U.S. Forests. Science 290(5494):1148-1151. DOI: 10.1126/science.290.5494.1148.

Chapin, F. S., G. M. Woodwell, J. T. Randerson, et al. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9(7):1041-1050. DOI: 10.1007/s10021-005-0105-7.

Cole, J. J. 2013. Chapter 6 - The Carbon Cycle: With a Brief Introduction to Global Biogeochemistry. In Fundamentals of Ecosystem Science: Academic Press.

Dahl, T. E. 2011. Status and Trends of Wetlands in the Conterminous United States 2004 to 2009. Washington, D.C.: U.S. Department of the Interior, Fish and Wildlife Service.

DeVries, T. 2014. The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over the industrial era. Global Biogeochemical Cycles 28(7):631-647. DOI: 10.1002/2013GB004739.

DeVries, T., M. Holzer, and F. Primeau. 2017. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature 542(7640):215-218. DOI: 10.1038/nature21068.

EIA. 2017. U.S. Energy-Related Carbon Dioxide Emissions, 2016.

EPA. 2017. Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2015. EPA 430-P-17-001. Washington, DC, EPA.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2018. Review of the Draft Second State of the Carbon Cycle Report (SOCCR2). Washington, DC: The National Academies Press. doi: 10.17226/25045.
×

Euskirchen, E. S., M. S. Bret-Harte, G. R. Shaver, et al. 2017. Long-Term Release of Carbon Dioxide from Arctic Tundra Ecosystems in Alaska. Ecosystems 20(5):960-974. DOI: 10.1007/s10021-016-0085-9.

Farrell, J. 2016. Corporate funding and ideological polarization about climate change. Proceedings of the National Academy of Sciences of the United States of America 113(1):92-97. DOI: 10.1073/pnas.1509433112.

Feng, K., S. J. Davis, L. Sun, et al. 2015. Drivers of the US CO<inf>2</inf> emissions 1997-2013. Nature Communications 6. DOI: 10.1038/ncomms8714.

GEA. 2012. Global Energy Assessment - Toward a Sustainable Future. Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria.

Golub, M., A. R. Desai, G. A. McKinley, et al. 2017. Large Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes. Journal of Geophysical Research: Biogeosciences 122(11):2909-2924. DOI: 10.1002/2017JG003794.

Gomez-Casanovas, N., T. W. Hudiburg, C. J. Bernacchi, et al. 2016. Nitrogen deposition and greenhouse gas emissions from grasslands: Uncertainties and future directions. Global Change Biology 22(4):1348-1360. DOI: 10.1111/gcb.13187.

Goodale, C. L., M. J. Apps, R. A. Birdsey, et al. 2002. Forest carbon sinks in the Northern Hemisphere. Ecological Applications 12(3):891-899. DOI: 10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2.

Gorham, E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1(2):182-195. DOI: 10.2307/1941811.

Gruber, N., M. Gloor, S. E. Mikaloff Fletcher, et al. 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochemical Cycles 23(1). DOI: 10.1029/2008GB003349.

Hakkarainen, J., I. Ialongo, and J. Tamminen. 2016. Direct space-based observations of anthropogenic CO2 emission areas from OCO-2. Geophysical Research Letters 43(21):11,400-411,406. DOI: 10.1002/2016GL070885.

Harden, J. W., E. T. Sundquist, R. F. Stallard, et al. 1992. Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet. Science 258(5090):1921-1924.

Hasler, C. T., D. Butman, J. D. Jeffrey, et al. 2015. Freshwater biota and rising pCO2? Ecology Letters 19(1):98-108. DOI: 10.1111/ele.12549.

Hawkins, E., and R. Sutton. 2009. The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society 90(8):1095. DOI: 10.1175/2009BAMS2607.1.

Hendrick, M. F., R. Ackley, B. Sanaie-Movahed, et al. 2016. Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments. Environmental Pollution 213:710-716. DOI: 10.1016/j.envpol.2016.01.094.

Hsiang, S. M., K. C. Meng, and M. A. Cane. 2011. Civil conflicts are associated with the global climate. Nature 476(7361):438-441. DOI: 10.1038/nature10311.

Hsiang, S. M., M. Burke, and E. Miguel. 2013. Quantifying the influence of climate on human conflict. Science 341(6151). DOI: 10.1126/science.1235367.

Jacob, D. J., A. J. Turner, J. D. Maasakkers, et al. 2016. Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmospheric Chemistry and Physics 16(22):14371-14396. DOI: 10.5194/acp-16-14371-2016.

Khatiwala, S., F. Primeau, and T. Hall. 2009. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462(7271):346-349. DOI: 10.1038/nature08526.

Khatiwala, S., T. Tanhua, S. Mikaloff Fletcher, et al. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences 10(4):2169-2191. DOI: 10.5194/bg-10-2169-2013.

Kort, E. A., C. Frankenberg, K. R. Costigan, et al. 2014. Four Corners: The largest US methane anomaly viewed from space. Geophysical Research Letters 41(19):6898-6903. DOI: 10.1002/2014GL061503.

Landschützer, P., N. Gruber, and D. C. E. Bakker. 2016. Decadal variations and trends of the global ocean carbon sink. Global Biogeochemical Cycles 30(10):1396-1417. DOI: 10.1002/2015GB005359.

Landschützer, P., N. Gruber, D. C. E. Bakker, et al. 2014. Recent variability of the global ocean carbon sink. Global Biogeochemical Cycles 28(9):927-949. DOI: 10.1002/2014GB004853.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2018. Review of the Draft Second State of the Carbon Cycle Report (SOCCR2). Washington, DC: The National Academies Press. doi: 10.17226/25045.
×

Landschützer, P., N. Gruber, D. C. E. Bakker, et al. 2013. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 10(11):7793-7815. DOI: 10.5194/bg-10-7793-2013.

Landschützer, P., N. Gruber, F. A. Haumann, et al. 2015. The reinvigoration of the Southern Ocean carbon sink. Science 349(6253):1221-1224. DOI: 10.1126/science.aab2620.

Le Quéré, C., R. M. Andrew, J. G. Canadell, et al. 2016. Global Carbon Budget 2016. Earth System Science Data 8(2):605-649. DOI: 10.5194/essd-8-605-2016.

Le Quéré, C., R. M. Andrew, P. Friedlingstein, et al. 2017. Global carbon budget 2017. Earth System Science Data Discussions. DOI: org/10.5194/essd-2017-123.

Loisel, J., Z. Yu, D. W. Beilman, et al. 2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24(9):1028-1042. DOI: 10.1177/0959683614538073.

Lovenduski, N. S., and G. B. Bonan. 2017. Reducing uncertainty in projections of terrestrial carbon uptake. Environmental Research Letters 12(4). DOI: 10.1088/1748-9326/Aa66b8.

Lovenduski, N. S., G. A. McKinley, A. R. Fay, et al. 2016. Partitioning uncertainty in ocean carbon uptake projections: Internal variability, emission scenario, and model structure. Global Biogeochemical Cycles 30(9):1276-1287. DOI: 10.1002/2016GB005426.

Lu, W., J. Xiao, F. Liu, et al. 2017. Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: a meta-analysis of eddy covariance data. Global Change Biology 23(3):1180-1198. DOI: 10.1111/gcb.13424.

Luyssaert, S., E. D. Schulze, A. Börner, et al. 2008. Old-growth forests as global carbon sinks. Nature 455(7210):213-215. DOI: 10.1038/nature07276.

McKinley, G. A., N. Urban, V. Bennington, et al. 2011. Preliminary carbon budgets for the Laurentian Great Lakes. OCB News 4:1-7.

Melillo, J. M., S. D. Frey, K. M. DeAngelis, et al. 2017. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358(6359):101-105. DOI: 10.1126/science.aan2874.

Melton, J. R., R. Wania, E. L. Hodson, et al. 2013. Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10(2):753-788. DOI: 10.5194/bg-10-753-2013.

Miller, S. M., S. C. Wofsy, A. M. Michalak, et al. 2013. Anthropogenic emissions of methane in the United States. Proceedings of the National Academy of Sciences of the United States of America 110(50):20018-20022. DOI: 10.1073/pnas.1314392110.

Norby, R. J., and Y. Luo. 2004. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytologist 162(2):281-293. DOI: 10.1111/j.1469-8137.2004.01047.x.

NRC. 2013. Transitions to Alternative Vehicles and Fuels. Washington, DC: National Academies Press. DOI: 10.17226/18264.

Obrist, D., E. H. Delucia, and J. A. Arnone III. 2003. Consequences of wildfire on ecosystem CO2 and water vapour fluxes in the Great Basin. Global Change Biology 9(4):563-574. DOI: 10.1046/j.1365-2486.2003.00600.x.

Phillips, J. C., G. A. McKinley, V. Bennington, et al. 2015. The Potential for CO2-Induced Acidification in Freshwater: A Great Lakes Case Study. Oceanography 28(2):136-145. DOI: 10.5670/oceanog.2015.37.

Prater, M. R., and E. H. DeLucia. 2006. Non-native grasses alter evapotranspiration and energy balance in Great Basin sagebrush communities. 139: 154-163.

Prater, M. R., D. Obrist, J. A. Arnone III, et al. 2006. Net carbon exchange and evapotranspiration in postfire and intact sagebrush communities in the Great Basin. Oecologia 146(4):595-607. DOI: 10.1007/s00442-005-0231-0.

Randerson, J. T., K. Lindsay, E. Munoz, et al. 2015. Multicentury changes in ocean and land contributions to the climate-carbon feedback. Global Biogeochemical Cycles 29(6):744-759. DOI: 10.1002/2014GB005079.

Ratcliffe, J., R. Andersen, R. Anderson, et al. 2018. Contemporary carbon fluxes do not reflect the long-term carbon balance for an Atlantic blanket bog. The Holocene 28(1):140-149. DOI: 10.1177/0959683617715689.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2018. Review of the Draft Second State of the Carbon Cycle Report (SOCCR2). Washington, DC: The National Academies Press. doi: 10.17226/25045.
×

Roulet, N. T., P. M. Lafleur, P. J. H. Richard, et al. 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13(2):397-411. DOI: 10.1111/j.1365-2486.2006.01292.x.

Sabine, C. L., and T. Tanhua. 2010. Estimation of Anthropogenic CO2 Inventories in the Ocean. Annual Review of Marine Science 2(1):175-198. DOI: 10.1146/annurev-marine-120308-080947.

Sabine, C. L., R. A. Feely, N. Gruber, et al. 2004. The oceanic sink for anthropogenic CO2. Science 305(5682):367-371. DOI: 10.1126/science.1097403.

Saunois, M., R. B. Jackson, P. Bousquet, et al. 2016. The growing role of methane in anthropogenic climate change. Environmental Research Letters 11(12). DOI: 10.1088/1748-9326/11/12/120207.

Shahiduzzaman, M. D., and A. Layton. 2015. Changes in CO2 emissions over business cycle recessions and expansions in the United States: A decomposition analysis. Applied Energy 150:25-35. DOI: 10.1016/j.apenergy.2015.04.007.

St Louis, V. L., C. A. Kelly, E. Duchemin, et al. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate. Bioscience 50(9):766-775. DOI: 10.1641/0006-3568(2000)050[0766:Rsasog]2.0.Co;2.

Stocker, B. D., Z. Yu, C. Massa, et al. 2017. Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use. Proceedings of the National Academy of Sciences of the United States of America 114(7):1492-1497. DOI: 10.1073/pnas.1613889114.

Supran, G., and N. Oreskes. 2017. Assessing ExxonMobil’s climate change communications (1977-2014). Environmental Research Letters 12(8). DOI: 10.1088/1748-9326/aa815f.

Swann, A. L. S., F. M. Hoffman, C. D. Koven, et al. 2016. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences of the United States of America 113(36):10019-10024. DOI: 10.1073/pnas.1604581113.

Takahashi, T., S. C. Sutherland, R. Wanninkhof, et al. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography 56(8-10):554-577. DOI: 10.1016/j.dsr2.2008.12.009.

Templer, P. H., and A. B. Reinmann. 2011. Multi-factor global change experiments: What have we learned about terrestrial carbon storage and exchange? New Phytologist 192(4):797-800. DOI: 10.1111/j.1469-8137.2011.03959.x.

Tian, H., Q. Yang, R. G. Najjar, et al. 2015. Anthropogenic and climatic influences on carbon fluxes from eastern North America to the Atlantic Ocean: A process-based modeling study. Journal of Geophysical Research: Biogeosciences 120(4):752-772. DOI: 10.1002/2014JG002760.

Tolonen, K., and J. Turunen. 1996. Accumulation rates of carbon in mires in Finland and implications for climate change. Holocene 6(2):171-178. DOI: 10.1177/095968369600600204.

Treat, C. C., M. C. Jones, P. Camill, et al. 2016. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. Journal of Geophysical Research: Biogeosciences 121(1):78-94. DOI: 10.1002/2015JG003061.

Trettin, C. C., B. Song, M. F. Jurgensen, et al. 2001. Existing Soil Carbon Models Do Not Apply to Forested Wetlands. Gen. Tech. Rep. SRS-46. Asheville, NC, F. S. USDA, Southern Research Station.

Turner, A. J., D. J. Jacob, J. Benmergui, et al. 2016. A large increase in U.S. methane emissions over the past decade inferred from satellite data and surface observations. Geophysical Research Letters 43(5):2218-2224. DOI: 10.1002/2016GL067987.

Turner, A. J., D. J. Jacob, K. J. Wecht, et al. 2015. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. Atmospheric Chemistry and Physics 15(12):7049-7069. DOI: 10.5194/acp-15-7049-2015.

Turunen, J., K. Tolonen, E. Tomppo, et al. 2002. Estimating carbon accumulation rates of undrained mires in Finland - Application to boreal and subarctic regions. Holocene 12(1):69-80. DOI: 10.1191/0959683602hl522rp.

Vinuya, F., F. DiFurio, and E. Sandoval. 2010. A decomposition analysis of CO2 emissions in the United States. Applied Economics Letters 17(10):925-931. DOI: 10.1080/00036840902762688.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2018. Review of the Draft Second State of the Carbon Cycle Report (SOCCR2). Washington, DC: The National Academies Press. doi: 10.17226/25045.
×

Wecht, K. J., D. J. Jacob, C. Frankenberg, et al. 2014. Mapping of North American methane emissions with high spatial resolution by inversion of SCIAMACHY satellite data. Journal of Geophysical Research 119(12):7741-7756. DOI: 10.1002/2014JD021551.

Weiss, L. C., L. Pötter, A. Steiger, et al. 2018. Rising pCO2 in Freshwater Ecosystems Has the Potential to Negatively Affect Predator-Induced Defenses in Daphnia. Current Biology 28(2):327-332.e323. DOI: https://org/10.1016/j.cub.2017.12.022.

Yu, Z. 2011. Holocene carbon flux histories of the world’s peatlands: Global carbon-cycle implications. Holocene 21(5):761-774. DOI: 10.1177/0959683610386982.

Yu, Z., D. H. Vitt, and R. K. Wieder. 2014. Continental fens in western Canada as effective carbon sinks during the Holocene. Holocene 24(9):1090-1104. DOI: 10.1177/0959683614538075.

Yu, Z., J. Loisel, D. P. Brosseau, et al. 2010. Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters 37(13). DOI: 10.1029/2010GL043584.

Yu, Z. C. 2012. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 9(10):4071-4085. DOI: 10.5194/bg-9-4071-2012.

Zhang, F., J. M. Chen, Y. Pan, et al. 2012. Attributing carbon changes in conterminous U.S. forests to disturbance and non-disturbance factors from 1901 to 2010. Journal of Geophysical Research: Biogeosciences 117(2). DOI: 10.1029/2011JG001930.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2018. Review of the Draft Second State of the Carbon Cycle Report (SOCCR2). Washington, DC: The National Academies Press. doi: 10.17226/25045.
×

This page intentionally left blank.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2018. Review of the Draft Second State of the Carbon Cycle Report (SOCCR2). Washington, DC: The National Academies Press. doi: 10.17226/25045.
×
Page 139
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2018. Review of the Draft Second State of the Carbon Cycle Report (SOCCR2). Washington, DC: The National Academies Press. doi: 10.17226/25045.
×
Page 140
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2018. Review of the Draft Second State of the Carbon Cycle Report (SOCCR2). Washington, DC: The National Academies Press. doi: 10.17226/25045.
×
Page 141
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2018. Review of the Draft Second State of the Carbon Cycle Report (SOCCR2). Washington, DC: The National Academies Press. doi: 10.17226/25045.
×
Page 142
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2018. Review of the Draft Second State of the Carbon Cycle Report (SOCCR2). Washington, DC: The National Academies Press. doi: 10.17226/25045.
×
Page 143
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2018. Review of the Draft Second State of the Carbon Cycle Report (SOCCR2). Washington, DC: The National Academies Press. doi: 10.17226/25045.
×
Page 144
Next: Appendix: Committee Biosketches »
Review of the Draft Second State of the Carbon Cycle Report (SOCCR2) Get This Book
×
Buy Paperback | $60.00 Buy Ebook | $48.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The second “State of the Climate Cycle Report” (SOCCR2) aims to elucidate the fundamental physical, chemical, and biological aspects of the carbon cycle and to discuss the challenges of accounting for all major carbon stocks and flows for the North American continent. This assessment report has broad value, as understanding the carbon cycle is not just an academic exercise. Rather, this understanding can provide an important foundation for making a wide variety of societal decisions about land use and natural resource management, climate change mitigation strategies, urban planning, and energy production and consumption. To help assure the quality and rigor of SOCCR2, this report provides an independent critique of the draft document.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!