Skip to main content

Currently Skimming:

10 Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species
Pages 43-49

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 43...
... Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; and John Innes Centre, Norwich Research Park, Colney Norwich NR4 7UH, United Kingdom In this article we briefly review theories about the ecological roles of microbial secondary metabolites and discuss the prevalence of multiple secondary metabolite production by strains of Streptomyces, highlighting results from analysis of the recently sequenced Streptomyces coelicolor and Streptomyces avermitilis genomes. We address this question: Why is multiple secondary metabolite production in Streptomyces species so commonplace?
From page 44...
... in a review that emphasizes the roles of secondary metabolites in chemical communication, the topic of this Sackler symposium. An even larger number of secondary metabolic gene clusters was found in the recently sequenced Streptomyces avermiiilis genome (30 dusters covering ~6% of the genome)
From page 45...
... These observations suggest that clavulanic acid production in a clavam-producing ancestor, which acquired the ability to produce cephamycin, could have arisen via chromosomal duplication of the davam cluster followed by subsequent acquisition of the late steps in the clavulanic acid pathway, which involve the stereochemical inversions that are key to ,B-lactamase activity. The chromosomal linkage of the cephamycin and the clavulanic acid clusters would facilitate simultaneous horizontal transfer of both clusters to other organisms, which would clearly be beneficial to recipients.
From page 46...
... The stepwise model for evolution of streptogramin production is similar to that outlined above for evolution of cephamycin and clavulanic acid production and might prove to be a useful general model for evolution of the production of multiple secondary metabolites that function synergistically. Other Potentially Synergistic, Coproduced Pairs or Groups of Antibiotics.
From page 47...
... It is not immediately obvious what selective advantage S coelicolor gains through the coregulated production of two structurally distinct hydroxamate siderophores.
From page 48...
... Thus, the production of structurally diverse secondary nonribosomally synthesized peptide siderophores, in addition to the characteristic desferrioxamine siderophores, may be common in streptomycetes. An appealing explanation for the coregulated production of two or more structurally distinct siderophores by Streptomyces species stems from the observation that many organisms that neither biosynthesise nor excrete desferrioxrnine-like siderophores are nevertheless able to specifically take up femoxamine complexes and use the iron associated with them.
From page 49...
... 30. de Crecy-Lagard, V., Blanc, V., Gil, P., Naudin, L., Lorenzon, S., Famechohn, A., Bamas-Jacques, N., Crouzet, J., Thiebaut, D., et al.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.