Skip to main content

Currently Skimming:

17 Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera
Pages 87-94

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 87...
... How did these closely related species evolve such diverse desaturases, and how was it possible to mutate from one strongly stabilized pheromone system to another that used pheromone components with different double bond positions? Desaturase Genes The biosynthetic enzymes in the moth pheromone glands could have evolved from genes involved in normal fatty acid metabolism, but it was soon recognized (5)
From page 88...
... It also became obvious that there were desaturase genes present in the pheromone gland that were not functioning to produce unsaturated fatty acid product and some desaturase clones that showed no activity in any of the available functional assays. These results provided some insights into how this multigene family evolved and how these genes could play a role in the speciation process.
From page 89...
... The tree was reconstructed from JTE amino acid distances (28) using the maximum likelihood method as implemented in the PROML computer program in the PHYLIP software package (http://evolution.genetics.washington.edu/phylip.html)
From page 90...
... A large and diverse olfactory receptor multigene family would provide an adaptive advantage for male moths, allowing for the rapid evolution of male response to female pheromone blends (Fig.
From page 91...
... In the same way, knowledge of the genomic organization of desaturase genes from moths would improve our understanding of this multigene family in moths and expand our opportunities to conduct comparative genomic studies across even deeper evolutionary divides. In that context, it will be interesting to see what sorts of evolutionary patterns characterize the desaturase genes of other insect species in which the reproductive biology of pheromones is different but no less complicated.
From page 92...
... (2000) Molecular Evolution and Phylogenetics (O~ord Univ.
From page 93...
... Berenbaum and Gene E Robinson Program Friclay, January 17 Welcome Reception and Registration Saturday, January 18 Genomics of Chemical Attraction: Genomics of Olfaction Cori Bargmann, University of California, San Francisco Genomics of Olfaction in Caenorhabditis elegant John Carlson, Yale University Genomics of Olfaction in Drosophila melanogaster Linda Buck, Fred Hutchinson Cancer Research Center Genomics of Olfactory Receptors in Rodents Gene Robinson, University of Illinois, Urbana-Champaign Pheromone Regulation of Division of Labor in Honey Bee Colonies: From Behavior to Gene Expression Profiles in the Brain Genomics of Chemical Attractions: Molecular Genetics, Evolution, and Biochemistry of Attractant Signaling Hugh Robertson, University of Illinois, Urbana~hampaign Molecular Evolution of the Insect and Nematode Chemoreceptor Superfamilies Wendell Roelofs, Cornell University Molecular Genetics of Pheromone Biosynthesis in Lepidoptera John Hildebrand, University of Arizona Central Processing of Chemosensory Signals: Anticipating Post-Genomic Opportunities Nancy Moran, University of Arizona Interactions of Insects with Bacterial Symbionts Thomas Eisner, Cornell University Can We Survive Without Natural Products Chemistry?
From page 94...
... Sunday, January 19 Molecular Genetics/Genomics of Chemical Repulsion and Defense: Predator/Prey and Pathogen/Host Interactions Baldomero Olivera, University of Utah Venomous Cone Snails, Specialists in Neuropharmacology: Reconstructing an Evolutionary History of Drug Development Bonnie Bassler, Princeton University How Bacteria Talk to Each Other Sir David Hopwood, John Innes Centre, Norwich Research Park Streptomyces Secondary Metabolites: Much More than Weapons of Mass Destruction Klaus Hahlbrock, Max Planck Institute Transcriptional Reprogramming and Secondary Metabolite Accumulation During Plant/Pathogen Interactions Molecular Genetics/Genomics of Chemical Repulsion and Defense: Plant/lnsect Interactions Ian Baldwin, Max Planck Institute Allopolyploid Speciation and Its Effects on Ecological Adaptations: Plant-Herbivore Interactions in Nicotiana Native to North America Clarence Ryan, Washington State University Signaling for Herbivore Resistance in Solaneceae Species: Systemins, Prosystemins, and the Systemin Receptor Thomas Mitchell-Olds, Max Planck Institute Genomics of Plant/lnsect Interactions in Arabidopsis May Berenbaum, University of Illinois, Urbana-Champaign Cytochrome P450s in Insects An Embarrassment of Riches


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.