Skip to main content

Currently Skimming:


Pages 24-84

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 24...
... 4 LIVE LOAD FOR CALIBRATION 4.1 Development of Live Load Models for Service Limit States 4.1.1 Introduction The consideration of limit states, both ultimate (strength) and serviceability, requires the knowledge of loads.
From page 25...
... 4.1.2 WIM Database The truck survey includes WIM truck measurements from 52 sites obtained from NCHRP 12-76 and FHWA. The data obtained from FHWA is summarized herein and includes trucks recorded from: • Arizona (SPS 1 – Special Pavement Study, Location 1)
From page 26...
... • Antelope East Bound – Site 003 – data recorded almost continuously from April 2006 until March 2007 (107 days missing) • Antelope West Bound – Site 003 – data recorded almost continuously from April 2006 until March 2007 (109 days missing)
From page 27...
... • I-495 East Bound – Site 0580 – data recorded continuously from January 2006 until December 2006 • Highway 12 – Site 2680 – data recorded continuously from January 2005 until December 2005 • I-84 (East Bound and West Bound) – Site 8280 – data recorded continuously from January 2006 until December 2006 • I-84 (East Bound and West Bound)
From page 28...
... Vehicles considered to be permit vehicles and illegally loaded trucks were filtered using the following criteria: • Total number of axles less than 3 and GVW is more than 50 kips • Steering axle weight is more than 35 kips • Individual axle weight is more than 45 kips Vehicles used to calibrate for the fatigue limit state were determined by filtering out trucks with GVW less than 20 kips from the trucks used for the service limit states. This follows the process historically used to perform fatigue analysis.
From page 29...
... for the position of the Ontario curve relative to the other curves. At the upper tail of the curve, the Ontario data does not indicate that the heaviest vehicles in the Ontario study are heavier that those represented by other curves.
From page 30...
... Figure 4-3 CDF of GVW – Oregon, Florida and Ontario. Figure 4-4 CDF of GVW – Indiana, Mississippi and Ontario.
From page 31...
... As an initial observation, the data shown in Figure 4-2 through Figure 4-5 is generally consistent for the majority of the sites (The word "consistent" refers to the similarity of the general shape of the curves, i.e., the CDFs.)
From page 32...
... Table 4-2 WIM Locations and Number of Recorded Vehicles Site Number of Days in Data Total Number of Truck Records, N Lane ADTT AZ SPS-1 365 35,572 97 AZ SPS-2 365 1,430,461 3919 AR SPS-2 365 1,675,349 4590 CO SPS-2 365 343,603 941 DE SPS-1 365 201,677 553 IL SPS-6 365 854,075 2340 IN SPS-6 214 185,267 508 KS SPS-2 365 477,922 1309 LA SPS-1 365 85,702 235 ME SPS-5 365 183,576 503 MD SPS-5 365 164,389 450 MN SPS-5 365 55,572 152 NM SPS-1 245 117,102 321 NM SPS-5 245 608,280 1667 PA SPS-6 365 1,495,741 4098 TN SPS-6 365 1,622,320 4445 VA SPS-1 365 259,190 710 WI SPS-1 365 226,943 622 CA Antelope EB 258 837,667 2192* CA Antelope WB 256 943,147 2258*
From page 33...
... FHWA Data NCHRP Data Figure 4-6 Legend for All Graphs. 4.2 Initial Data Analysis 4.2.1 Gross Vehicle Weight (GVW)
From page 34...
... Figure 4-7 CDF of Gross Vehicle Weight (GVW)
From page 35...
... Figure 4-8 CDFs of WIM Moment and HL93 Moment Ratio, Span = 30 ft. Figure 4-9 CDFs of WIM Moment and HL-93 Moment Ratio, Span = 60 ft.
From page 36...
... Figure 4-10 CDFs of WIM Moment and HL93 Moment Ratio, Span = 90 ft. Figure 4-11 CDFs of WIM Moment and HL93 Moment Ratio, Span = 120 ft.
From page 37...
... 4.2.3 Filtering of Presumed Illegal Overloads and Special Permit Loads The goal of this analysis was to observe the change in the very top tail of the distribution after removing a number of the heaviest vehicles from the database. These extremely heavy vehicles seem to be either permit vehicles which should either be included in the design process, as some states do, or reviewed for permit issuance using the Strength II limit state load combination, or they are illegal overloads.
From page 38...
... Table 4-3 Removal of the Heaviest Vehicles for 90 ft Spans Figure Number State Location Number of trucks before filtering Number of trucks after filtering Number of removed trucks Percent of removed trucks Figure 4-14 NY 0580 2,474,407 2,468,952 5455 0.22% Figure 4-14 NY 2680 89,286 89,250 36 0.04% Figure 4-15 NY 8280 1,717,972 1,717,428 544 0.03% Figure 4-15 NY 8382 1,551,454 1,550,914 540 0.03% Figure 4-16 NY 9121 1,235,963 1,235,886 77 0.01% Figure 4-16 MS I-10 2,103,302 2,103,300 2 0.00% Figure 4-14 Data Removal New York 0580 and 2680. Figure 4-15 Data Removal New York 8280 and 8382.
From page 39...
... Figure 4-16 Data Removal New York 9121 and Mississippi I-10. 4.2.4 Multiple Presence Analysis Multiple presence was investigated by a correlation analysis of the WIM data sets.
From page 40...
... Figure 4-17 Two Cases of The Simultaneous Occurrence. Two Trucks – Side-by-Side The analysis of the degree of correlation was performed for Site 9936 in Florida along I10 and 8382 in New York with a total number of records equal to 1,654,004 and 1,594,674, respectively.
From page 41...
... Florida I10 New York 8382 Figure 4-19 Comparison of the Mean GVW and GVW of the Whole Population – Florida and New York. Two Trucks – One After Another The filtering of the data resulted in selection of 8380 fully correlated trucks in one lane in Florida and 9868 fully correlated trucks in one lane in New York.
From page 42...
... Florida I10 New York 8382 Figure 4-21 Comparison of the Mean GVW and GVW of the Whole Population – Florida and New York. Implications for Specification Development This study of multiple presence based on WIM data indicated that the vehicles representing the extreme tails of the CDF need not be considered to occur simultaneously in multiple lanes.
From page 43...
... • Different probabilities of exceedance may be used for various limit states based on consequences. Different probabilities of exceedance may also be used when calibrating the same limit state for components in different environment.
From page 45...
... Table 4-4 Vertical Coordinates for the Mean Maximum Moment. ADTT 250 1,000 2,500 5,000 10,000 1 Day 2.65 3.09 3.35 3.54 3.72 2 Weeks 3.44 3.08 4.02 4.18 4.33 1 Month 3.65 4.00 4.20 4.35 4.50 2 Months 3.82 4.15 4.35 4.50 4.65 6 Months 4.09 4.39 4.59 4.73 4.87 1 Year 4.24 4.55 4.73 4.87 5.01 5 Years 4.59 4.87 5.05 5.18 5.31 50 Years 5.05 5.31 5.47 5.60 5.72 75 Years 5.13 5.38 5.55 5.67 5.78 100 Years 5.18 5.44 5.60 5.72 5.83 For example, for the WIM moments in Figure 4-11 (span 120 ft.)
From page 46...
... Figure 4-22 Vertical Coordinates for Different Time Periods, ADTT = 1000 and Span = 120 ft. In the results for each ADTT and span length, there are 32 values of the mean maximum 1 day moment, 32 values of the mean maximum 2 week moment, and so on.
From page 47...
... Figure 4-23 CDFs of Mean Maximum Moment Ratios for ADTT = 1000 and Span Length 120 ft. 4.3.2 Statistical Parameters of Live Load It is assumed that the considered 32 WIM locations are representative for the truck traffic in the United States.
From page 48...
... interested in some parts of the CDF only. Different curves can have different slope and this is reflected in the standard deviations.
From page 49...
... 4.3.4 Axle Loads Decks are typically designed for axle loads, not truck loads. Therefore, statistical parameters for axle loads for various time periods and ADTTs are developed using methodology analogous to the methodology used for moments (see in Section 4.3.2)
From page 50...
... Table 4-5 Statistical Parameters of Live Load Moments for ADTT 250, λ = µ + 1.5σ ADTT 250 Span 30 ft 60 ft 90 ft 120 ft 200 ft 300 ft λ µ COV λ µ COV λ µ COV λ µ COV λ µ COV λ µ COV 1 Day 0.92 0.65 0.28 0.82 0.64 0.23 0.80 0.66 0.17 0.79 0.65 0.15 0.71 0.56 0.18 0.61 0.48 0.18 2 Weeks 1.06 0.80 0.21 1.05 0.80 0.16 1.01 0.80 0.18 1.02 0.80 0.16 0.93 0.73 0.16 0.84 0.67 0.16 1 Month 1.12 0.85 0.21 1.09 0.85 0.19 1.08 0.85 0.18 1.08 0.85 0.17 1.01 0.78 0.19 0.90 0.73 0.16 2 Months 1.14 0.90 0.18 1.15 0.91 0.17 1.14 0.90 0.18 1.14 0.90 0.17 1.05 0.85 0.15 0.95 0.77 0.15 6 Months 1.19 0.95 0.17 1.23 0.96 0.19 1.20 0.97 0.15 1.19 0.98 0.14 1.12 0.91 0.15 1.04 0.85 0.15 1 Year 1.23 1.00 0.15 1.27 0.98 0.19 1.24 1.00 0.16 1.22 1.04 0.12 1.15 0.94 0.15 1.08 0.88 0.15 5 Years 1.31 1.07 0.15 1.35 1.09 0.16 1.31 1.13 0.11 1.31 1.14 0.10 1.25 1.02 0.15 1.18 0.97 0.15 50 Years 1.37 1.17 0.11 1.39 1.16 0.13 1.39 1.25 0.07 1.37 1.19 0.10 1.32 1.06 0.16 1.25 1.02 0.15 75 Years 1.38 1.20 0.10 1.40 1.19 0.12 1.41 1.27 0.07 1.39 1.21 0.10 1.34 1.08 0.16 1.27 1.04 0.15 100 Years 1.39 1.22 0.09 1.43 1.21 0.12 1.42 1.28 0.07 1.41 1.22 0.10 1.35 1.09 0.16 1.29 1.05 0.15 Table 4-6 Statistical Parameters of Live Load Moments for ADTT 1,000, λ = µ + 1.5σ ADTT 1,000 Span 30 ft 60 ft 90 ft 120 ft 200 ft 300 ft λ µ COV λ µ COV λ µ COV λ µ COV λ µ COV λ µ COV 1 Day 0.99 0.72 0.28 0.89 0.71 0.20 0.90 0.72 0.17 0.89 0.71 0.17 0.81 0.63 0.19 0.71 0.55 0.19 2 Weeks 1.14 0.87 0.21 1.13 0.90 0.16 1.13 0.89 0.18 1.14 0.91 0.16 1.06 0.85 0.16 0.97 0.77 0.16 1 Month 1.18 0.95 0.16 1.19 0.95 0.16 1.19 0.95 0.17 1.19 0.96 0.16 1.11 0.91 0.14 1.01 0.83 0.14 2 Months 1.23 0.99 0.16 1.26 0.99 0.18 1.26 1.00 0.17 1.23 1.03 0.13 1.16 0.96 0.14 1.07 0.89 0.14 6 Months 1.27 1.04 0.14 1.31 1.05 0.16 1.30 1.10 0.12 1.27 1.09 0.11 1.22 0.99 0.15 1.15 0.93 0.15 1 Year 1.33 1.07 0.16 1.34 1.08 0.16 1.32 1.15 0.10 1.31 1.14 0.10 1.25 1.01 0.16 1.18 0.95 0.16 5 Years 1.37 1.11 0.15 1.37 1.14 0.13 1.36 1.21 0.08 1.35 1.17 0.10 1.30 1.06 0.15 1.24 1.01 0.15 50 Years 1.38 1.24 0.07 1.42 1.21 0.12 1.41 1.26 0.08 1.41 1.21 0.11 1.35 1.11 0.14 1.28 1.05 0.14 75 Years 1.40 1.26 0.07 1.42 1.23 0.11 1.42 1.28 0.07 1.41 1.23 0.10 1.36 1.13 0.13 1.29 1.07 0.13 100 Years 1.40 1.27 0.07 1.44 1.24 0.11 1.43 1.29 0.07 1.43 1.24 0.10 1.37 1.14 0.13 1.30 1.09 0.13 48
From page 51...
... Table 4-7 Statistical Parameters of Live Load Moments for ADTT 2,500, λ = µ + 1.5σ ADTT 2,500 Span 30 ft 60 ft 90 ft 120 ft 200 ft 300 ft λ µ COV λ µ COV λ µ COV λ µ COV λ µ COV λ µ COV 1 Day 1.03 0.80 0.19 0.97 0.79 0.18 0.97 0.77 0.17 0.98 0.78 0.17 0.90 0.70 0.19 0.80 0.62 0.19 2 Weeks 1.20 0.93 0.19 1.20 0.96 0.17 1.20 0.96 0.17 1.20 0.97 0.15 1.12 0.92 0.14 1.02 0.84 0.14 1 Month 1.23 0.99 0.16 1.25 0.99 0.17 1.26 1.00 0.17 1.22 1.04 0.12 1.16 0.95 0.15 1.09 0.89 0.15 2 Months 1.28 1.04 0.15 1.31 1.04 0.17 1.29 1.11 0.11 1.27 1.12 0.09 1.21 0.98 0.15 1.12 0.91 0.15 6 Months 1.31 1.07 0.15 1.34 1.07 0.17 1.32 1.15 0.10 1.31 1.14 0.10 1.25 1.01 0.16 1.18 0.95 0.16 1 Year 1.34 1.11 0.14 1.35 1.11 0.14 1.36 1.19 0.09 1.34 1.17 0.09 1.28 1.04 0.15 1.21 0.98 0.15 5 Years 1.36 1.15 0.12 1.39 1.18 0.12 1.39 1.24 0.08 1.38 1.20 0.10 1.33 1.07 0.16 1.26 1.01 0.16 50 Years 1.40 1.25 0.08 1.42 1.22 0.11 1.43 1.29 0.07 1.43 1.23 0.11 1.37 1.11 0.15 1.29 1.05 0.15 75 Years 1.40 1.26 0.07 1.43 1.24 0.10 1.43 1.30 0.07 1.44 1.24 0.10 1.37 1.13 0.14 1.29 1.06 0.14 100 Years 1.40 1.27 0.07 1.44 1.25 0.10 1.44 1.31 0.07 1.44 1.25 0.10 1.39 1.14 0.14 1.32 1.09 0.14 Table 4-8 Statistical Parameters of Live Load Moments for ADTT 5,000, λ = µ + 1.5σ ADTT 5,000 Span 30 ft 60 ft 90 ft 120 ft 200 ft 300 ft λ µ COV λ µ COV λ µ COV λ µ COV λ µ COV λ µ COV 1 Day 1.08 0.85 0.18 1.02 0.82 0.17 1.03 0.82 0.17 1.03 0.82 0.17 0.95 0.75 0.17 0.84 0.67 0.17 2 Weeks 1.24 0.98 0.17 1.26 1.00 0.17 1.24 1.00 0.16 1.24 1.04 0.13 1.16 0.96 0.14 1.06 0.88 0.14 1 Month 1.28 1.04 0.15 1.32 1.03 0.18 1.30 1.12 0.11 1.26 1.11 0.09 1.20 0.99 0.14 1.13 0.93 0.14 2 Months 1.31 1.07 0.15 1.34 1.07 0.17 1.32 1.15 0.10 1.31 1.14 0.10 1.23 1.02 0.14 1.16 0.96 0.14 6 Months 1.34 1.11 0.14 1.35 1.11 0.14 1.34 1.19 0.08 1.32 1.17 0.09 1.28 1.04 0.15 1.23 1.00 0.15 1 Year 1.35 1.14 0.12 1.38 1.14 0.14 1.38 1.21 0.09 1.36 1.19 0.09 1.31 1.07 0.15 1.25 1.02 0.15 5 Years 1.39 1.16 0.13 1.40 1.19 0.12 1.40 1.25 0.08 1.41 1.21 0.11 1.34 1.10 0.15 1.28 1.05 0.15 50 Years 1.41 1.21 0.11 1.44 1.24 0.10 1.44 1.27 0.09 1.46 1.23 0.12 1.39 1.13 0.15 1.30 1.06 0.15 75 Years 1.42 1.22 0.11 1.45 1.25 0.10 1.45 1.29 0.08 1.46 1.25 0.11 1.40 1.14 0.15 1.31 1.07 0.15 100 Years 1.42 1.23 0.11 1.45 1.26 0.10 1.47 1.30 0.08 1.47 1.26 0.11 1.40 1.15 0.15 1.33 1.08 0.15 49
From page 52...
... Table 4-9 Statistical Parameters of Live Load Moments for ADTT 10,000, λ = µ + 1.5σ ADTT 10,000 Span 30 ft 60 ft 90 ft 120 ft 200 ft 300 ft λ µ COV λ µ COV λ µ COV λ µ COV λ µ COV λ µ COV 1 Day 1.17 0.88 0.22 1.09 0.89 0.16 1.11 0.87 0.18 1.13 0.87 0.20 1.02 0.81 0.17 0.91 0.75 0.17 2 Weeks 1.29 1.02 0.18 1.31 1.04 0.17 1.29 1.11 0.11 1.27 1.12 0.09 1.22 0.98 0.16 1.16 0.93 0.16 1 Month 1.32 1.06 0.16 1.34 1.08 0.16 1.32 1.15 0.10 1.29 1.14 0.09 1.25 1.01 0.16 1.20 0.97 0.16 2 Months 1.35 1.09 0.16 1.35 1.11 0.14 1.35 1.18 0.09 1.32 1.17 0.09 1.28 1.04 0.15 1.23 1.00 0.15 6 Months 1.35 1.12 0.13 1.37 1.14 0.13 1.37 1.20 0.09 1.34 1.19 0.08 1.30 1.06 0.15 1.25 1.02 0.15 1 Year 1.37 1.17 0.11 1.39 1.16 0.13 1.39 1.24 0.08 1.38 1.20 0.10 1.32 1.08 0.15 1.27 1.04 0.15 5 Years 1.39 1.24 0.08 1.41 1.21 0.11 1.42 1.27 0.08 1.42 1.22 0.11 1.37 1.11 0.15 1.30 1.06 0.15 50 Years 1.40 1.28 0.06 1.45 1.24 0.11 1.45 1.30 0.08 1.46 1.25 0.11 1.40 1.14 0.15 1.31 1.07 0.15 75 Years 1.41 1.29 0.06 1.46 1.26 0.10 1.47 1.32 0.08 1.47 1.26 0.11 1.40 1.16 0.14 1.32 1.09 0.14 100 Years 1.42 1.30 0.06 1.47 1.27 0.10 1.49 1.33 0.08 1.48 1.27 0.11 1.42 1.17 0.14 1.33 1.10 0.14 Table 4-10 Statistical Parameters of Live Load Reactions for ADTT 250, λ = µ + 1.5σ ADTT 250 Span 30 ft 60 ft 90 ft 120 ft 200 ft 300 ft µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV 1 Day 1.02 0.85 0.13 0.88 0.74 0.12 0.88 0.74 0.12 0.86 0.72 0.13 0.73 0.61 0.13 0.57 0.48 0.13 2 Weeks 1.22 1.02 0.13 1.08 0.91 0.12 1.11 0.94 0.12 1.08 0.90 0.13 0.97 0.80 0.14 0.82 0.68 0.14 1 Month 1.28 1.07 0.13 1.14 0.96 0.13 1.17 0.99 0.12 1.15 0.97 0.12 1.06 0.88 0.14 0.93 0.77 0.14 2 Months 1.32 1.11 0.13 1.19 1.01 0.12 1.22 1.04 0.12 1.20 1.02 0.12 1.12 0.92 0.14 0.98 0.81 0.14 6 Months 1.37 1.16 0.12 1.27 1.07 0.12 1.32 1.11 0.13 1.30 1.10 0.12 1.18 0.97 0.14 1.08 0.89 0.14 1 Year 1.41 1.20 0.12 1.31 1.10 0.13 1.37 1.14 0.13 1.35 1.12 0.13 1.22 1.01 0.14 1.12 0.93 0.14 5 Years 1.49 1.26 0.12 1.38 1.15 0.13 1.46 1.22 0.13 1.44 1.20 0.13 1.35 1.11 0.14 1.24 1.02 0.14 50 Years 1.54 1.30 0.12 1.49 1.23 0.14 1.52 1.28 0.13 1.52 1.28 0.13 1.45 1.18 0.15 1.36 1.11 0.15 75 Years 1.55 1.31 0.12 1.50 1.24 0.14 1.55 1.29 0.13 1.55 1.29 0.13 1.46 1.19 0.15 1.37 1.12 0.15 100 Years 1.56 1.32 0.12 1.50 1.25 0.14 1.55 1.30 0.13 1.55 1.30 0.13 1.47 1.20 0.15 1.38 1.12 0.15 50
From page 53...
... Table 4-11 Statistical Parameters of Live Load Reactions for ADTT 1,000, λ = µ + 1.5σ ADTT 1000 Span 30 ft 60 ft 90 ft 120 ft 200 ft 300 ft µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV 1 Day 1.14 0.94 0.14 0.95 0.80 0.13 0.94 0.80 0.11 0.91 0.79 0.10 0.84 0.70 0.13 0.74 0.62 0.13 2 Weeks 1.31 1.10 0.13 1.17 0.99 0.12 1.19 1.02 0.11 1.19 1.02 0.11 1.09 0.91 0.13 0.97 0.81 0.13 1 Month 1.35 1.15 0.12 1.23 1.03 0.13 1.26 1.08 0.11 1.25 1.07 0.11 1.17 0.97 0.13 1.06 0.88 0.13 2 Months 1.38 1.18 0.11 1.26 1.08 0.11 1.31 1.11 0.12 1.31 1.11 0.12 1.22 1.01 0.14 1.11 0.92 0.14 6 Months 1.42 1.22 0.11 1.29 1.11 0.11 1.38 1.15 0.13 1.37 1.16 0.12 1.28 1.05 0.14 1.18 0.97 0.14 1 Year 1.45 1.25 0.11 1.32 1.14 0.11 1.40 1.19 0.12 1.40 1.19 0.12 1.32 1.09 0.14 1.21 1.00 0.14 5 Years 1.50 1.29 0.11 1.40 1.20 0.11 1.49 1.26 0.12 1.50 1.26 0.13 1.38 1.14 0.14 1.28 1.06 0.14 50 Years 1.56 1.33 0.11 1.46 1.25 0.11 1.56 1.30 0.13 1.57 1.30 0.14 1.47 1.20 0.15 1.35 1.10 0.15 75 Years 1.57 1.34 0.11 1.47 1.26 0.11 1.57 1.31 0.13 1.58 1.31 0.14 1.48 1.21 0.15 1.36 1.11 0.15 100 Years 1.57 1.35 0.11 1.48 1.27 0.11 1.57 1.32 0.13 1.59 1.32 0.14 1.49 1.22 0.15 1.36 1.12 0.15 Table 4-12 Statistical Parameters of Live Load Reactions for ADTT 2,500, λ = µ + 1.5σ ADTT 2500 Span 30 ft 60 ft 90 ft 120 ft 200 ft 300 ft µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV 1 Day 1.18 1.00 0.12 1.02 0.88 0.10 1.07 0.90 0.12 1.04 0.89 0.11 0.93 0.78 0.13 0.79 0.66 0.13 2 Weeks 1.35 1.14 0.12 1.23 1.05 0.11 1.29 1.09 0.12 1.29 1.09 0.12 1.19 0.99 0.13 1.06 0.89 0.13 1 Month 1.38 1.17 0.12 1.26 1.08 0.11 1.35 1.14 0.12 1.34 1.13 0.12 1.23 1.02 0.14 1.12 0.93 0.14 2 Months 1.41 1.20 0.12 1.29 1.11 0.11 1.40 1.17 0.13 1.38 1.17 0.12 1.29 1.06 0.14 1.17 0.96 0.14 6 Months 1.47 1.24 0.12 1.34 1.14 0.11 1.44 1.20 0.13 1.44 1.20 0.13 1.33 1.09 0.15 1.22 1.00 0.15 1 Year 1.49 1.25 0.13 1.36 1.16 0.11 1.47 1.23 0.13 1.48 1.24 0.13 1.38 1.12 0.15 1.25 1.02 0.15 5 Years 1.55 1.29 0.13 1.44 1.21 0.12 1.55 1.29 0.13 1.54 1.28 0.13 1.43 1.17 0.15 1.31 1.08 0.15 50 Years 1.59 1.33 0.13 1.53 1.27 0.13 1.58 1.32 0.13 1.59 1.32 0.14 1.50 1.21 0.16 1.38 1.11 0.16 75 Years 1.60 1.34 0.13 1.54 1.28 0.13 1.59 1.33 0.13 1.60 1.33 0.14 1.51 1.22 0.16 1.39 1.12 0.16 100 Years 1.60 1.35 0.13 1.54 1.29 0.13 1.59 1.34 0.13 1.61 1.34 0.14 1.51 1.23 0.16 1.40 1.13 0.16 51
From page 54...
... Table 4-13 Statistical Parameters of Live Load Reactions for ADTT 5,000,  λ = µ + 1.5σ ADTT 5000 Span 30 ft 60 ft 90 ft 120 ft 200 ft 300 ft µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV 1 Day 1.25 1.05 0.12 1.09 0.94 0.11 1.14 0.96 0.13 1.12 0.94 0.13 1.02 0.84 0.14 0.90 0.74 0.14 2 Weeks 1.42 1.19 0.13 1.30 1.10 0.12 1.36 1.13 0.13 1.36 1.13 0.13 1.26 1.03 0.15 1.13 0.93 0.15 1 Month 1.46 1.22 0.13 1.34 1.13 0.12 1.39 1.16 0.13 1.40 1.17 0.13 1.30 1.06 0.15 1.18 0.96 0.15 2 Months 1.48 1.24 0.13 1.36 1.15 0.12 1.43 1.20 0.13 1.44 1.20 0.13 1.33 1.09 0.15 1.21 0.99 0.15 6 Months 1.51 1.27 0.13 1.39 1.18 0.12 1.47 1.23 0.13 1.48 1.24 0.13 1.39 1.13 0.15 1.27 1.03 0.15 1 Year 1.54 1.28 0.13 1.41 1.20 0.12 1.50 1.26 0.13 1.51 1.27 0.13 1.41 1.15 0.15 1.29 1.06 0.15 5 Years 1.58 1.32 0.13 1.48 1.25 0.12 1.54 1.30 0.12 1.56 1.30 0.13 1.46 1.19 0.15 1.34 1.09 0.15 50 Years 1.62 1.36 0.13 1.53 1.29 0.12 1.59 1.35 0.12 1.61 1.35 0.13 1.52 1.23 0.15 1.40 1.14 0.15 75 Years 1.63 1.37 0.12 1.54 1.30 0.12 1.60 1.36 0.12 1.62 1.36 0.13 1.53 1.24 0.15 1.41 1.15 0.15 100 Years 1.63 1.38 0.12 1.55 1.31 0.12 1.61 1.37 0.12 1.62 1.37 0.13 1.53 1.25 0.15 1.42 1.15 0.15 Table 4-14 Statistical Parameters of Live Load Reactions for ADTT 10,000, λ = µ + 1.5σ ADTT 10000 Span 30 ft 60 ft 90 ft 120 ft 200 ft 300 ft µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV µ+1.5σ µ COV 1 Day 1.31 1.10 0.13 1.20 1.00 0.13 1.23 1.03 0.13 1.21 1.01 0.13 1.11 0.91 0.14 0.98 0.81 0.14 2 Weeks 1.45 1.21 0.13 1.35 1.12 0.13 1.40 1.17 0.13 1.41 1.18 0.13 1.31 1.07 0.15 1.19 0.97 0.15 1 Month 1.48 1.24 0.13 1.39 1.16 0.13 1.43 1.20 0.13 1.45 1.21 0.13 1.36 1.10 0.15 1.24 1.00 0.15 2 Months 1.50 1.26 0.13 1.42 1.19 0.13 1.46 1.23 0.12 1.48 1.24 0.13 1.39 1.13 0.15 1.27 1.03 0.15 6 Months 1.52 1.28 0.13 1.45 1.21 0.13 1.48 1.25 0.12 1.52 1.26 0.13 1.41 1.15 0.15 1.31 1.07 0.15 1 Year 1.55 1.29 0.13 1.46 1.22 0.13 1.51 1.28 0.12 1.54 1.28 0.13 1.44 1.17 0.15 1.33 1.08 0.15 5 Years 1.60 1.34 0.13 1.50 1.26 0.13 1.55 1.31 0.12 1.59 1.33 0.13 1.49 1.22 0.15 1.37 1.12 0.15 50 Years 1.64 1.37 0.13 1.56 1.30 0.13 1.62 1.36 0.13 1.62 1.35 0.13 1.54 1.25 0.15 1.43 1.16 0.15 75 Years 1.65 1.38 0.13 1.57 1.31 0.13 1.63 1.37 0.12 1.63 1.36 0.13 1.55 1.26 0.15 1.44 1.17 0.15 100 Years 1.66 1.39 0.13 1.57 1.32 0.13 1.63 1.38 0.12 1.64 1.37 0.13 1.55 1.27 0.15 1.45 1.18 0.15 52
From page 55...
... Table 4-15 Statistical Parameters for Axle Loads, λ = µ + 1.5σ Time period ADTT=250 ADTT=1000 ADTT=2500 ADTT=5000 ADTT=10 000 λ COV [%]
From page 56...
... 4.4 Development of Statistical Parameters of Fatigue Load 4.4.1 Objective Fatigue is one of the major causes of distress in steel highway bridges. Cracking or rupture of components and connections calls for costly repairs or replacements.
From page 57...
... Three cases are considered: mid-span moment for a simply supported bridge, moment at the interior support of a two span continuous bridge and moment at 0.4 span of a continuous bridge. The surveyed vehicles were run over influence lines as traffic streams to determine the number and magnitude of moment cycles for a wide range of span lengths for each case.
From page 58...
... 4.4.3 Fatigue Limit State II – Finite Fatigue Life Live load on bridges is caused mainly by moving trucks. As a truck moves across a bridge, the stress at any point varies.
From page 59...
... Figure 4-27 Moment Corresponding to the Upper 0.01%, Span = 120 ft. The calculations were performed for the considered locations, cases and span lengths.
From page 60...
... Table 4-17 The Maximum Moment Range for Simply Supported Bridges at the Mid-Span Simple Support - mid-span # of Vehicles "1/10000 Moment Cycle" "1/10000 Moment" / HS20 Fatigue Moment 30 60 90 120 200 30 60 90 120 200 Arizona (SPS-1) 26501 424 1003 1761 2754 5640 1.74 1.84 1.63 1.70 1.84 Arizona (SPS-2)
From page 61...
... Table 4-18 The Maximum Moment Range for Continuous Bridges at the Middle Support Continuous - Middle Support # of Vehicles "1/10000 Moment Cycle" "1/10000 Moment" / HS20 Fatigue Moment 30 60 90 120 200 30 60 90 120 200 Arizona (SPS-1) 26501 -266 -701 -1026 -1608 -3089 1.45 1.95 1.94 2.11 2.30 Arizona (SPS-2)
From page 62...
... Table 4-19 The Maximum Moment Range for Continuous Bridges at 0.4 of the Span Length Continuous - 0.4L # of Vehicles "1/10000 Moment Cycle" "1/10000 Moment" / HS20 Fatigue Moment 30 60 90 120 200 30 60 90 120 200 Arizona (SPS-1) 26501 399 976 1764 2769 5542 1.62 1.67 1.61 1.71 1.83 Arizona (SPS-2)
From page 63...
... 4.4.5 Statistical Parameters of Fatigue Live Load The objective was to determine the statistical parameters of fatigue load for the Fatigue I limit state (LS) that can be considered as representative for a national load.
From page 64...
... Figure 4-30 The Maximum Moment Range Ratio (Fatigue LS I) for Continuous Bridges at 0.4 of the Span Length.
From page 65...
... Figure 4-31 Probability Density Function of the National Fatigue Load. The statistical parameters were calculated for all considered cases and span length.
From page 66...
... The calibration of the fatigue limit state for concrete and reinforcement is detailed in Chapter 5. 4.5 Development of Overload and Permit Load Parameters 4.5.1 Based on WIM Data 4.5.1.1 Load Model Heavy vehicles in the WIM data are assumed to be either permit vehicles or illegally overloaded vehicles.
From page 67...
... Table 4-21 Number of Times WIM Moments Exceeded a Factored HL-93 Loadings MOMENT Ratio Truck/HL-93 >= 1.1 Ratio Truck/HL-93 >= 1.2 Ratio Truck/HL-93 >= 1.3 Site 30 ft 60 ft 90 ft 120 ft 200 ft 30 ft 60 ft 90 ft 120 ft 200 ft 30 ft 60 ft 90 ft 120 ft 200 ft AZ SPS-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AZ SPS-2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 AR SPS-2 2 7 3 0 0 0 3 0 0 0 0 0 0 0 0 CO SPS-2 0 2 5 4 0 0 0 2 0 0 0 0 0 0 0 DE SPS-1 36 33 22 11 0 10 22 10 1 0 1 11 1 0 0 IL SPS-6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 IN SPS-6 3 11 11 10 2 2 4 5 4 0 0 0 1 0 0 KS SPS-2 16 33 35 31 2 7 16 17 7 0 6 7 6 0 0 LA SPS-1 44 6 12 14 7 26 6 7 7 0 6 6 5 4 0 ME SPS-5 4 4 5 2 0 0 4 2 0 0 0 2 0 0 0 MD SPS-5 5 6 2 2 0 0 1 1 0 0 0 1 0 0 0 MN SPS-5 7 5 6 5 0 4 2 2 1 0 2 1 1 0 0 NM SPS-1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 NM SPS-5 3 1 1 2 0 2 0 0 0 0 0 0 0 0 0 PA SPS-6 32 22 17 14 1 13 17 13 1 0 3 13 2 0 0 TN SPS-6 53 4 4 0 0 5 1 0 0 0 1 0 0 0 0 VA SPS- 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 WI SPS-1 1 0 3 3 1 0 0 1 1 0 0 0 0 0 0 CA Antelope EB 0 1 0 0 5 0 0 0 0 0 0 0 0 0 0 CA Antelope WB 0 5 4 13 28 0 0 0 1 9 0 0 0 0 1 CA Bowman 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 CA LA-710 NB 1 31 50 51 15 0 6 24 19 0 0 0 4 1 0 CA LA-710 SB 1 17 45 48 14 0 3 18 19 0 0 0 1 1 0 CA Lodi 0 4 16 46 140 0 0 1 2 32 0 0 0 0 2 FL I-10 79 40 46 75 37 22 16 14 17 5 10 5 4 5 2 FL I-95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FL US-29 653 495 322 245 106 360 266 174 119 51 177 160 82 59 21 MS I-10 24 22 31 33 22 7 2 10 19 2 2 2 2 2 1 MS I-55UI 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 MS I-55R 19 30 48 58 32 7 8 16 21 19 2 3 5 8 9 MS US-49 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 MS US-61 0 0 1 2 1 0 0 1 1 0 0 0 0 0 0 Ratio Truck/HL-93 >= 1.1 Ratio Truck/HL-93 >= 1.2 Ratio Truck/HL-93 >= 1.3 30 ft 60 ft 90 ft 120 ft 200 ft 30 ft 60 ft 90 ft 120 ft 200 ft 30 ft 60 ft 90 ft 120 ft 200 ft Total W/O FL 29 331 285 373 430 310 105 111 144 121 68 33 51 32 21 15 Average per site 10.7 9.2 12.0 13.9 10.0 3.4 3.6 4.6 3.9 2.2 1.1 1.6 1.0 0.7 0.5 65
From page 68...
... Table 4-22 Exceedances Per Year Site MOMENT – Exceedances Per Year Ratio Truck/HL-93 >= 1.0 Ratio Truck/HL-93 >= 1.1 Ratio Truck/HL-93 >= 1.2 Ratio Truck/HL-93 >= 1.3 30 ft 60 ft 90 ft 120 ft 200 ft 30 ft 60 ft 90 ft 120 ft 200 ft 30 ft 60 ft 90 ft 120 ft 200 ft 30 ft 60 ft 90 ft 120 ft 200 ft AZ SPS-1 4 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AS SPS-2 0 2 6 5 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 AR SPS-2 14 10 17 10 0 2 7 3 0 0 0 3 0 0 0 0 0 0 0 0 CO SPS-2 0 5 6 6 2 0 2 5 4 0 0 0 2 0 0 0 0 0 0 0 DE SPS-1 140 48 33 27 1 36 33 22 11 0 10 22 10 1 0 1 11 1 0 0 IL SPS-6 1 3 4 4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 IN SPS-6 27 32 24 19 14 5 19 19 17 3 3 7 9 7 0 0 0 2 0 0 KS SPS-2 42 47 80 96 10 16 33 35 31 2 7 16 17 7 0 6 7 6 0 0 LA SPS-1 76 16 25 30 13 44 6 12 14 7 26 6 7 7 0 6 6 5 4 0 ME SPS-5 6 7 8 7 1 4 4 5 2 0 0 4 2 0 0 0 2 0 0 0 MD SPS-5 25 8 8 2 1 5 6 2 2 0 0 1 1 0 0 0 1 0 0 0 MN SPS-5 9 8 18 19 2 7 5 6 5 0 4 2 2 1 0 2 1 1 0 0 NM SPS-1 1 1 1 3 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 NM SPS-5 12 7 7 9 4 4 1 1 3 0 3 0 0 0 0 0 0 0 0 0 PA SPS-6 155 45 22 21 1 32 22 17 14 1 13 17 13 1 0 3 13 2 0 0 TN SPS-6 2085 29 8 7 0 53 4 4 0 0 5 1 0 0 0 1 0 0 0 0 VA SPS-1 7 10 1 2 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 WI SPS-1 6 3 5 4 2 1 0 3 3 1 0 0 1 1 0 0 0 0 0 0 CA Antelope EB 0 13 25 31 25 0 1 0 0 7 0 0 0 0 0 0 0 0 0 0 CA Antelope WB 0 30 71 100 84 0 7 6 19 40 0 0 0 1 13 0 0 0 0 1 CA Bowman 0 3 3 8 16 0 0 0 3 3 0 0 0 0 3 0 0 0 0 0 CA LA-710 NB 10 99 150 153 85 1 34 55 56 16 0 7 26 21 0 0 0 4 1 0 CA LA-710 SB 3 62 105 111 54 1 17 45 48 14 0 3 18 19 0 0 0 1 1 0 CA Lodi 0 110 137 281 417 0 5 19 55 168 0 0 1 2 38 0 0 0 0 2 FL I-10 279 141 159 264 152 81 41 47 77 38 23 16 14 18 5 10 5 4 5 2 FL I-95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MS I-10 41 48 53 53 44 26 24 34 36 24 8 2 11 21 2 2 2 2 2 1 MS I-55UI 0 4 5 11 8 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 MS I-55R 142 100 255 349 89 20 31 50 61 33 7 8 17 22 20 2 3 5 8 9 MS US-49 0 3 11 13 7 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 MS US-61 0 1 5 8 6 0 0 1 2 1 0 0 1 1 0 0 0 0 0 0 FL US-29 1291 995 651 496 204 673 510 332 253 109 371 274 179 123 53 183 165 85 61 22 Annual Average 99.6 28.9 40.4 53.4 33.6 11.0 9.8 12.8 15.1 11.7 3.5 3.7 4.9 4.2 2.6 1.1 1.7 1.1 0.7 0.5 66
From page 69...
... Figure 4-32 Annual Average Exceedances Versus Span. Figure 4-33 Annual Average Exceedances Versus Ratio Truck/HL-93.
From page 70...
... Table 4-23 Events Per Year Scaled to ADTT = 2500 Site MOMENT – Events Per Year Scaled to ADTT = 2500 Ratio Truck/HL-93 >= 1.0 Ratio Truck/HL-93 >= 1.1 Ratio Truck/HL-93 >= 1.2 Ratio Truck/HL-93 >= 1.3 30 ft 60 ft 90 ft 120 ft 200 ft 30 ft 60 ft 90 ft 120 ft 200 ft 30 ft 60 ft 90 ft 120 ft 200 ft 30 ft 60 ft 90 ft 120 ft 200 ft AZ SPS-1 103 0 0 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AS SPS-2 0 1 4 3 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 AR SPS-2 8 5 9 5 0 1 4 2 0 0 0 2 0 0 0 0 0 0 0 0 CO SPS-2 0 13 16 16 5 0 5 13 11 0 0 0 5 0 0 0 0 0 0 0 DE SPS-1 633 217 149 122 5 163 149 100 50 0 45 100 45 5 0 5 50 5 0 0 IL SPS-6 1 3 4 4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 IN SPS-6 79 94 69 54 39 15 54 54 49 10 10 20 25 20 0 0 0 5 0 0 KS SPS-2 80 90 153 183 19 31 63 67 59 4 13 31 32 13 0 11 13 11 0 0 LA SPS-1 808 170 266 319 138 468 64 128 149 74 277 64 74 74 0 64 64 53 43 0 ME SPS-5 30 35 40 35 5 20 20 25 10 0 0 20 10 0 0 0 10 0 0 0 MD SPS-5 139 44 44 11 6 28 33 11 11 0 0 6 6 0 0 0 6 0 0 0 MN SPS-5 148 131 296 312 33 115 82 99 82 0 66 33 33 16 0 33 16 16 0 0 NM SPS-1 8 8 8 16 0 0 8 8 8 0 0 0 0 0 0 0 0 0 0 0 NM SPS-5 45 / / * 8 8 2 2 3 0 3 0 0 0 0 0 0 0 0 0 PA SPS-6 95 27 13 13 1 20 13 10 9 1 8 10 8 1 0 2 8 1 0 0 TN SPS-6 1173 16 4 4 0 30 2 2 0 0 3 1 0 0 0 1 0 0 0 0 VA SPS-1 25 35 4 7 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 WI SPS-1 24 12 20 16 8 4 0 12 12 4 0 0 4 4 0 0 0 0 0 0 CA Antelope EB 0 10 20 24 20 0 1 0 0 5 0 0 0 0 0 0 0 0 0 0 CA Antelope WB 0 20 48 68 57 0 5 4 13 27 0 0 0 1 9 0 0 0 0 1 CA Bowman 0 1 1 4 8 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 CA LA-710 NB 2 20 31 31 17 0 7 11 11 3 0 1 5 4 0 0 0 1 0 0 CA LA-710 SB 1 12 21 22 11 0 3 9 9 3 0 1 4 4 0 0 0 0 0 0 CA Lodi 0 25 32 65 96 0 1 4 13 39 0 0 0 1 9 0 0 0 0 1 FL I-10 151 76 86 142 82 44 22 26 42 21 12 9 8 9 3 6 3 2 3 1 FL I-95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MS I-10 0 2 3 6 4 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 MS I-55UI 0 2 3 6 4 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 MS I-55R 93 66 167 229 58 13 21 33 40 22 5 5 11 14 13 1 2 3 5 6 MS US-49 0 2 8 10 5 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 MS US-61 0 6 23 40 29 0 0 6 11 6 0 0 6 6 0 0 0 0 0 0 FL US-29 2922 2252 1473 1122 462 1524 1155 751 572 247 840 621 406 278 119 413 373 191 138 49 Annual Average 117.0 37.8 50.6 58.7 21.7 32.0 18.4 20.8 19.8 7.5 14.3 9.7 9.1 5.8 1.2 4.0 5.6 3.2 1.7 0.3 68
From page 71...
... Figure 4-34 Annual Average Events Scaled to ADTT = 2500 Versus Span. Figure 4-35 Annual Average Events Scaled to ADTT = 2500 Versus Ratio Truck/HL-93.
From page 72...
... To summarize, based on a review of the WIM data: • Site-specific consideration of sites with unusually high volumes of heavy trucks is warranted • Design for a single lane loading is justified by this study • Elimination of the single lane MPF of 1.20 when investigating service limit states under overload vehicles is justified by this study 4.5.2 Based on Louisiana Permit Load Citations Louisiana DOTD provided a compilation of truck citations issued in the state in 2009. Due to missing needed information, the data was not sufficient for calibration.
From page 73...
... Table 4-25 shows the statistics when only permit vehicles with a legal load above 80,000 lbs are considered (680 records)
From page 74...
... Table 4-25 Statistics of Cited Permit Vehicles When Only Vehicles with GVW Greater Than 80,000 lbs are Considered Interstate Non-Interstate Total Number of Records No of violators Total Number of Records No of violators Steering axle (axle set 1)
From page 75...
... plotted in Figure 4-36. The shape of CDF of permit vehicles is similar to the upper tail of the WIM data from Louisiana; the part representing heavier vehicles.
From page 76...
... • For the 147 vehicles with permitted GVW between 100.01 kips to 125 kips, inclusive, one vehicle (0.68%) has a ratio greater than 1.25 (1.257)
From page 77...
... Table 4-26 Number of GVW Violations Per Weight Class for Louisiana Permit Vehicles Total No. of Records No.
From page 78...
... Figure 4-36 Gross Vehicle Weight of Louisiana Permit and WIM Trucks 76
From page 79...
... Figure 4-37 Ratio of Axle Group Scale Weight and Permitted Axle Set Weight for Axle Sets with Different Number of Axles 77
From page 80...
... Figure 4-38 Ratio of GVW and Permitted GVW for Permit Vehicles 78
From page 81...
... Figure 4-39 Correlation of GVW to Ratio of GVW and Permitted GVW 0 50 100 150 200 250 300 0 50 100 150 200 250 300 S ca le G V W Permitted GVW Louisiana Permit Vehicles (Type 9999)
From page 82...
... Figure 4-40 Correlation of GVW and Lane Moment for Various Span Lengths. (Laman 1993)
From page 83...
... Table 4-27 shows the distribution of the New Jersey Permitted GVW's and Louisiana permitted and actual GVW's is shown in Table 4-27 and Figure 4-41. The analysis of the data indicates that the majority of permits in New Jersey (83%)
From page 84...
... Figure 4-41 Histograms for NJ Permit Data and Louisiana Violation Records The significant difference between the distribution of the vehicles in different load categories in New Jersey permits as compared to the vehicles in Louisiana's permit vehicles violations indicated that generalizing the relationship between the permitted and scale weights in Louisiana's permit vehicle violations to New Jersey data is unjustifiable. 4.5.3 Conclusions Regarding Overloads and Permit Loads The analyses of WIM data led to the following conclusions: • Site-specific consideration of sites with unusually high volumes of heavy trucks is warranted • Design for a single lane loading is justified by this study • Elimination of the single lane MPF of 1.20 on the HL-93 loading when considering the effects of overload and permit vehicles for service limit state is justifiable The analyses of Louisiana permit load citations and comparing the data to New Jersey Permit data led to the following conclusions: • Heavier permit vehicles are less likely to violate the permitted axle group weights and GVW • When the GVW is violated, heavier vehicles tend to exceed the permitted value by a smaller percentage than lighter vehicles.

Key Terms



This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.