Skip to main content

Currently Skimming:

3 Importance of Burning Plasma Research
Pages 13-19

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 13...
... Beyond validation of theoretical models, important research areas also include methods to control energetic particles instability for helpful purposes such as favorably modifying the current profile or to govern the nonlinear dynamics to control fusion burn.2,3 A burning plasma experiment advances understanding of plasma transport properties from the core to the boundary. A burning plasma can be divided into an inner high-temperature core where fusion 1 National Research Council (NRC)
From page 14...
... fusion research program.5 Although there has been considerable progress made in predicting plasma transport, the validity of these predictions must be tested in future burning plasma experiments. Some of the highest performance discharges studied in DIII-D experiments decrease performance when produced with lower injected torque, as expected in ITER.6 Furthermore, additional research is needed to understand confinement scaling towards desirable fusion reactor conditions characterized by high plasma beta, steady state, and compatible divertors.
From page 15...
... A burning plasma experiment tests integrated scenarios that simultaneously test the requirements for stability, confinement, fuel purity, and compatibility with plasma-facing components needed for a fusion energy source. Since 2004, plasma operation and control scenarios have been developed and tested in preparation for ITER experiments.20 Additionally, high-fidelity integrated models,21 which take full benefit from advances in high-performance computing, are now routinely used to interpret experimental measurements and make progress in predicting the results of burning plasma experiments.22 The U.S.
From page 16...
... Many components and systems needed for fusion's safety objectives are unique, such as source diagnostics and cleaning technologies, state-of-the-art safety analyses tools, technologies for the remote handling of large activated components, technologies for the control of routine tritium releases, and innovative approaches for the control of tritiated and mixed waste streams.33 A burning plasma experiment will be an integrated demonstration of the safety, reliability, and effectiveness of these technologies.34 Fusion materials science. The behavior and integrity of materials in a fusion system are of great importance to the long-term viability of fusion energy.35 The high flux of energetic neutrons to the vessel and structural materials poses a serious materials problem that will require substantial testing, some of 28 Alfvén Prize winners: Marshall N
From page 17...
... This extended range of plasma parameters from high-field magnets allows more compact tokamak devices that may provide a lower cost path to future fusion reactors. ITER's superconducting magnet system will be the largest ever made and is designed to operate with the highest practical magnetic field strength for large toroidal field coils made of Niobium-Tin superconductors and consistent with the strength of steel.45 New developments of rare-earth barium-copper-oxide high-temperature superconductors may lead to larger magnetic field strength and potentially improve the prospects for magnetic fusion energy.46,47 However, the costs and performance of these advanced superconductors will not be fully understood 36 NRC, Burning Plasma: Bringing a Star to Earth, The National Academies Press, Washington, D.C., 2004.
From page 18...
... IMPORTANCE TO PLASMA SCIENCE AND OTHER SCIENCE The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances span a wide variety of fields in science and technology and were the focus of a 2015 Fusion Energy Sciences Advisory Committee report, Applications of Fusion Energy Research: Scientific and Technological Advances Beyond Fusion.54 There are many synergies between research in plasma physics and other fields, including high-energy physics and condensed matter physics, dating back many decades.
From page 19...
... , yet the broad program that must necessarily be in place to exploit the results from such an experiment will have a profound effect on other fields. For example, the tremendous advances made in computational plasma physics addressing burning plasma issues have had, and will continue to have, important impact on space and astrophysical questions where the intrinsic multi-scale, multi-physics nonlinear interactions can only be addressed by large-scale computations.63 Generally speaking, burning plasma research acts as an important driver for the development of novel concepts and methods at the interface between plasma physics, materials science,64 applied mathematics,65 and computer science,66 with wide visibility and impact.67 The substantial impacts of burning plasma research on science, technology, and engineering were identified in the 2004 Burning Plasma Assessment Committee report,68 and these have continued in several areas: (1)


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.