Skip to main content

Currently Skimming:


Pages 9-52

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 9...
... Page 9  V2X COMMUNICATIONS IN THE 5.9 GHZ SPECTRUM:   March 2020 Update  Contents  Summary ..................................................................................................................................................... 10  Introduction ................................................................................................................................................ 11  Section 1 ‐ 5.9 GHz Spectrum Time Line ..................................................................................................... 12  Foundational Development Period ......................................................................................................... 12  Moving from Development to Deployment ........................................................................................... 13  Progress Versus Uncertainty ................................................................................................................... 15  Special Temporary Authority .................................................................................................................. 16  Section 2 ‐ FCC NPRM to Reallocate the 5.9 GHz Spectrum ....................................................................... 18  Summary of the Process ......................................................................................................................... 18  Overview of Comments Submitted to the FCC on the Current NPRM ................................................... 19  Submitters ........................................................................................................................................... 20  Key Issues from Infrastructure Owners and Operators ...................................................................... 21  Key Issues from Other Transportation and Infrastructure Stakeholders ........................................... 22  Key Issues from Original Equipment Manufacturers (OEMs)  and Suppliers ...................................... 22  Key Issues from the Trucking and Commercial Vehicle Industry ........................................................ 23  Key Issues from Technology Companies Also in Opposition to the NPRM ......................................... 23  Key Issues from Current Secondary Spectrum Users .......................................................................... 24  Comment Spotlight: Keep the Spectrum, but Consider a New Approach .......................................... 25  Comment Spotlight: Legal Arguments ................................................................................................ 26  Key Issues in Support of the NPRM ..................................................................................................... 27  Section 3 ‐ Overview of Critical Terms and Testing Outcomes ................................................................... 29  Terms and Concepts ................................................................................................................................ 29  Current 5.9 GHz Spectrum and its Utilization ......................................................................................... 30  Introduction of C‐V2X ......................................................................................................................... 31  How the Post‐NPRM Spectrum Appears ............................................................................................. 32  Published Test Results on Interference .................................................................................................. 33  Published Benefits Analyses ................................................................................................................... 34  Conclusions ................................................................................................................................................. 37  Appendix A ‐ Technical Information ........................................................................................................... 38 
From page 10...
... Page 10  V2X COMMUNICATIONS IN THE 5.9 GHZ SPECTRUM:   March 2020 Update  Summary  This white paper is focused on the 5.9 GHz spectrum and the important role it has played -- and will  continue to play -- in achieving the many safety and efficiency goals originally established when 75 MHz  of the band was first set aside for intelligent transportation system (ITS)  services.  Connected vehicle applications made possible by the existence of this dedicated radio frequency band  can -- and will -- be a difference‐maker in future transportation systems.  The National Highway Traffic  Safety Administration (NHTSA)
From page 11...
... Page 11      Introduction  Connected Vehicle (CV)  technologies enable all types of vehicles, roadways, and mobile devices to  communicate and share vital transportation information. Several new and evolving mediums can  provide high‐speed low‐latency communication that will enable a host of applications categorized as  vehicle‐to‐vehicle (V2V)
From page 12...
... Page 12  Section 1 ‐ 5.9 GHz Spectrum Time Line  As an investment in the development of a safer transportation network to further the goals of Congress,  the U.S. Department of Transportation (USDOT) , and the ITS industry, the FCC allocated 75 MHz of  spectrum in the 5.9 GHz band for intelligent transportation services in 1999. This was envisioned to  improve traveler safety, decrease traffic congestion, and facilitate the reduction of air pollution while  conserving fossil fuels. The FCC understood this was an investment that would require further effort and  investigation from several stakeholders.3   As shown in Figure 1 below, the timeline for the 5.9 GHz spectrum evolution has passed through several  major milestones over the past two decades.  They can best be described as the Foundational  Development period, Moving from Development to Deployment, and Progress Versus Uncertainty.  Figure 1 ‐ Graphical Representation of the 5.9 GHz V2X Timeline (source: WSP USA)
From page 13...
... Page 13      The FCC began accepting applications for licenses and issued the first DSRC licenses in October 2004.  (Note that despite the first license being issued, deployment was still not possible until 2008 as noted  below) .  From 2004 to 2006, the industry continued working with USDOT and the FCC on the designation of two  channels within the 5.9 GHz Band for the highest priority vehicle safety communications, specifically  using DSRC. During this period the USDOT also began aggressively pursuing a "proof of concept" test in  Southeastern Michigan, to work through various deployment issues including system architecture and  the design of systems, subsystems, and components, as well as the public sector applications developed  to prove some of the system concepts.  The FCC Explicitly noted a spectrum sharing agreement had not yet been reached between the  transportation industry and incumbents, in its July 2006 Memorandum Opinion and Order regarding the  channel designation.  This was the one remaining regulatory barrier to actual DSRC deployment.  Led by ITS America and AASHTO, an agreement between the transportation industry and Satellite  Industry Association was submitted to the FCC in February 2008.  Almost 10 years after the initial  spectrum allocation, this agreement marked the first time that V2X technologies could be deployed  unencumbered by a lack of standards or the threat of interference.  Moving from Development to Deployment  From 2008 through 2017 many critical industry standards, product specifications, and security protocols  were developed for DSRC. Some were accomplished through numerous USDOT‐funded research and  prototype programs to standardize safety‐critical infrastructure elements, such as signal phase and  timing and maps, as well as safety/mobility applications that further the role and value of DSRC. Many of  these were public‐private partnerships or brought in significant private industry engagement to assure  that the technologies, applications, and standards would be industry‐ready quickly. Simultaneously,  USDOT was actively engaged with private sector Standards Developing Organizations (SDOs)
From page 14...
... Page 14      brought us closer to a stage of "industry‐ready" status.7  A graphic representation of the project is  shown in Figure 2.    Figure 2 ‐ Safety Pilot Model Deployment Overview (source: UMTRI)     At the same time the Safety Pilot Model Deployment was showing great promise, in February 2012,  Congress passed the Middle‐Class Tax Relief and Job Creation Act of 2012. This Act included a provision  requiring the National Telecommunications and Information Administration (NTIA)
From page 15...
... Page 15      that would be made possible by V2X communications. This was an important launching point as many  infrastructure agencies around the nation began to contemplate V2X deployments in their states.  While DSRC progress was rapidly expanding, in 2014 the 3rd Generation Partnership Project (3GPP) , a  collaborative project aimed at developing globally acceptable specifications for third generation (3G)
From page 16...
... Page 16  Not long after Toyota's announcement, two FCC Commissioners issued an unprecedented letter to  Toyota signaling the FCC's interest in opening the 5.9 GHz band for unlicensed use.9  Later in 2018, the  FCC released its Phase I Testing Report, and sought comments on the report, in October 2018.  The next  month, the 5G Automotive Association (5GAA)  petitioned the FCC for a waiver to allow C‐V2X to operate  in Channels 182 and 184, the upper 20 MHz of the 5.9 GHz band, leaving the remaining channels for  DSRC. And the Ford Motor Company announced plans for widespread installation of C‐V2X in upcoming  model years.  More than any other year, 2018 represented the "progress versus uncertainty" period.  During several speeches in 2019, FCC Chairman Ajit Pai referred to the 5.9 GHz spectrum as "lying  fallow," and to DSRC as a "promise unfulfilled."10  And in April of that year, Toyota announced it would  halt its plans to install DSRC across its vehicle fleet as announced only a year earlier.  Toyota said the  decision was based on "a range of factors, including the need for greater automotive industry  commitment as well as federal government support to preserve the 5.9 GHz spectrum band for DSRC."11  In late 2019, FCC Chairman Pai announced that the Commission intended to release a Notice of  Proposed Rulemaking (Docket 19‐138)
From page 17...
... Page 17  existing licensees."  The providers must contact any potentially affected license owners before  beginning operation, but if a "complaint of interference cannot be timely resolved, operation under this  STA must cease."  At the conclusion of the 60‐day STA, providers must "cease operating in the 5.9 GHz band and retune  equipment to operate in compliance with the Commission's equipment certifications."
From page 18...
... Page 18  Section 2 ‐ FCC NPRM to Reallocate the 5.9 GHz Spectrum  In December 2019, the FCC approved a Notice of Proposed Rulemaking (NPRM)  that would reduce the  safety spectrum set‐aside for CV technologies from 75 MHz to only 30 MHz, establish specific  technology requirements within that allocation, and open the rest of the spectrum to unlicensed Wi‐Fi  devices (FCC ET Docket No. 19‐138)
From page 19...
... Page 19      The time from closing of comment windows to FCC action can vary greatly, with both internal and  external factors influencing the timing. Likewise, the volume and nature of comments may or may not  impact timing.   During this period, FCC staff continues to take meetings with interested parties to have additional  discussions. Summary briefs of these meetings will be published as ex parte communications on the FCC  website.  There are many possible outcomes from the NPRM, but the most likely actions by the FCC are:  1. Issue a revised Report and Order that causes an action to be adopted that may or may not track  exactly with all that is included in the NPRM;  2.
From page 20...
... Page 20  reduced fatalities and injuries be considered under the FCC's mandate to allocate radio spectrum in the  "public interest".  Notably, among submitters in the transportation industry who voiced opposition to the NPRM, 80%  were either technology neutral, did not mention DSRC or C‐V2X in their comments, or encouraged the  provision of bandwidth for both technologies. Of the minority who expressed preference for a specific  technology, 14% favored DSRC and 6% favored C‐V2X.  Submitters  A wide variety of submissions were received:   The American Automobile Association, American Road & Transportation Builders Association, American Society of Civil Engineers, International Bridge, Tunnel and Turnpike Association, Institute of Transportation Engineers, ITS America, National Transportation Safety Board, Society of Automotive Engineers (SAE) , and the National Safety Council all submitted comments.
From page 21...
... Page 21      spectrum to support existing communication network infrastructures, particularly in emergency  and disaster situations.   Additional entrants in opposition to the NPRM included the National Sheriffs' Association,  International Association of Fire Fighters, National School Transportation Association, various  bicycling and walking advocacy organizations, groups interested in the efficiency enhancements  such as Securing America's Future Energy, industry groups like OmniAir, and safety organizations  like the Vision Zero Network.    USDOT submitted a significant amount of additional information in opposition to the NPRM, by  way of the United States Department of Commerce National Telecommunications and  Information Administration.   Technology companies Broadcom, Facebook, Comcast, and Microsoft, and various associations  including Citizens Against Government Waste, the Wireless Internet Service Providers  Association, the Open Technology Institute, Public Knowledge, and the Internet & Television  Association provided both comments and ex parte submissions in support of the NPRM.  Key Issues from Infrastructure Owners and Operators  Submissions from state and local transportation agencies and other key associations were strongly  united in opposition to this NPRM. They frequently raised several common issues. Some of these  include:   This action is shortsighted, given that 37,000 people are dying annually on our nation's  roadways and this technology has the potential to reduce that number by up to 80%. Many  jurisdictions are committed to Vision Zero goals; this action is in direct contradiction.   Public safety should be valued over potential commercial advancement. The safety, as well as  mobility and efficiency benefits, of using this spectrum for V2X need to be more carefully  considered and analyzed. Rather than only considering the potential economic opportunities of  opening the spectrum to unlicensed use, the FCC should also weigh the direct costs associated  with crashes (estimated at over $800 billion in 2017)  and traffic congestion ($140 billion)
From page 22...
... Page 22  mature standards like DSRC does, though they seemed open to testing dual‐units or following a  phased approach that allows new technology to be adopted without sacrificing existing  investments during the lifetime of existing equipment.   Key Issues from Other Transportation and Infrastructure Stakeholders  Many vendors, consultants, and academics echoed those of state and local DOTs, and included the  following highlights:   Safety is the top priority, and the benefit to society of 45 MHz of additional Wi‐Fi spectrum is small compared to the value of additional road safety.  30 MHz is not enough, and more research needs to be done on potential spectrum interference.
From page 23...
... Page 23      advanced ITS applications including platooning, traffic flow coordination for congestion  management, and automated valet services for parking management.   The opportunity to use the enormous supply of data of CAVs to save lives is what has motivated  an estimated $80‐billion of investment in automated vehicles between 2014 and 2017 alone.  This proposal risks stifling technological innovation.   Toyota points out that in the NPRM, the FCC proposes repurposing at least 20 MHz away from  DSRC to C‐V2X. However, it does not specify whether the C‐V2X technology that it is proposing  to be used is LTE V2X or 5G NRV2X. Since 5G NR V2X is not capable of same‐channel coexistence  with LTE V2X (and is not backwards compatible) , a decision to permit LTE V2X in a channel locks  in LTE V2X as the only C‐V2X technology that can be used in that channel -- now and into the  future.   Sufficient bandwidth is not optional, or nice‐to‐have, it is essential to automotive safety in this  context. When it comes to saving American lives, we should clearly strive to be the global  leader.  Key Issues from the Trucking and Commercial Vehicle Industry  The trucking industry raised many of the same points as other stakeholders, including:   Utilizing advanced vehicle technology will enhance both the safety of employees and of the  general public, particularly in today's challenging operating environment for large trucks.    One of the near‐term applications of these technologies is platooning of two or more tractor‐ semitrailer combination vehicles. This could help decrease traffic congestion, reduce emissions  and air pollution, and enhance safety.   This proposal will harm highway, road, and bridge safety.   Recommend coordinating more closely with USDOT to study implications.   While some previous estimates of the timing of transportation‐related use of these technologies  may have been overly aggressive, the future widespread benefits of the technologies should not  be underestimated.  Key Issues from Technology Companies Also in Opposition to the NPRM  Beyond infrastructure and automotive stakeholders, several wireless and technology companies also  came out in opposition to the NPRM as currently structured. Their comments included:   Qualcomm continued its support for C‐V2X over DSRC, but agreed that 30 MHz is not enough to  deploy potential applications fully.   Panasonic supported a technology‐neutral approach as it has supported both DSRC and C‐V2X  deployments and urged the FCC to undergo a more rigorous analysis that considers the billions  of dollars in economic impact provided by lifesaving V2X technologies, for which there are no  currently viable substitutes.   T‐Mobile and AT&T agreed that the public interest would be best served by designating the full  5.9 GHz band to ITS, though T‐Mobile voiced support for C‐V2X while AT&T remained  technology neutral. Their justification included:  o The Commission has already made sufficient additional spectrum available for  unlicensed use. The U.S. is an outlier in making substantially more spectrum available on  an unlicensed and shared basis than other countries. 
From page 24...
... Page 24  o This can help enable important improvements in safety, traffic efficiency, mobility, and energy efficiency on America's roads. o Reallocating the lower 45 MHz of the 5.9 GHz band for exclusively unlicensed Wi‐Fi use would deliver only incremental public benefits and have a minimal impact on investment in the unlicensed device ecosystem.
From page 25...
... Page 25      Comment Spotlight: Keep the Spectrum, but Consider a New Approach  While the automakers were not uniform on technology preferences (DSRC, C‐V2X, or both) , several of  their submissions did state the need for stakeholders to coalesce around the broader goal of  interoperability and focus on resolving any technical differences, while keeping the full 75 MHz.    General Motors suggested that the FCC allow the transportation community (vehicle  manufacturers and infrastructure owner‐operators)
From page 26...
... Page 26  Comment Spotlight: Legal Arguments  Several submissions that opposed this NPRM have introduced legal arguments, suggesting that the FCC  may lack the legal authority to implement this action. While these arguments might (or might not)   influence the initial action taken by the FCC, they could potentially arise later as the basis of legal  appeals if the NPRM should move forward as currently proposed.  Legal Reference  Issue Summary from Submitted Comments  Submitters  The NPRM represents a  "fundamental change" to  existing DSRC licenses,  which violates Sect 316 of  the Communications Act   (47 U.S.C.)
From page 27...
... Page 27  Legal Reference  Issue Summary from Submitted Comments  Submitters   The USDOT, the expert agency on transportation safety, and dozens of other transportation experts and organizations, have presented evidence that contradicts the FCC's proposal. Key Issues in Support of the NPRM  As noted earlier, a small number of commenters did support the NPRM as currently structured.   Technology Associations  Policy and Watchdog  Organizations  Private Companies   NCTA ‐ The Internet & Television Association  Wireless Internet Service Providers Association  Dynamic Spectrum Alliance  Wi‐Fi Alliance  Citizens Against Government Waste  Open Technology Institute  The Free State Foundation  R Street Institute  Competitive Enterprise Institute  Consumer Action for a Strong Economy, Inc.
From page 28...
... Page 28   The other comment stated that the Commission needs to reexamine the OOBE limit at the upper U‐NII‐4 band edge in a manner that protects the Vehicular Safety Service but does not restrict commercially important Wi‐Fi use cases. The proposed rule would significantly reduce or even eliminate the possibility of Wi‐Fi deployments in the band, and so the OOBE limit should be changed to match that of U‐NII‐3 devices.
From page 29...
... Page 29      Section 3 ‐ Overview of Critical Terms and Testing Outcomes  The current NPRM and the comments that have been received by the FCC related to this proposed  rulemaking include many terms and technologies that may not be familiar to those who aren't following  it closely.  Terms like U‐NII‐3 and U‐NII 4, interference and spectral masks, decibels (dB) , adjacent  channels and re‐channelization, detect and vacate, and sensitivity -- to name just a few.  Further, the  reports documenting the results of testing activities that have been performed by the FCC, USDOT,  CAMP, 5GAA and others introduce even more new terms and concepts.     This section will serve to identify and define those elements which are key to understanding the issues  and concerns of the proposed rulemaking.  It will also summarize important features of the current  legacy spectrum and give an overview of recent and relevant test activities critical to understanding the  impact this NPRM might have on safety‐related applications.      The high‐level discussion presented in this section is the result of detailed research and review of  multiple sources representing many different entities and different viewpoints.  Additional information  related to these topics, the technology, testing, and results of that testing can be found in the appendix.  Terms and Concepts   Dedicated Short‐Range Communications (DSRC)
From page 30...
... Page 30  Interference is defined by any external source whose output overlaps the channel of the intended  transmission and produces undesired effects in that band.  Interference can be in one of three forms:  ambient or background noise, packet collision, and transmitter message suppression.   Ambient noise is the culmination of all unwanted signals, both in‐band and adjacent, which reduces the  ability of weak signals from distant transmitters to be received. Ambient noise is typically a result of  unlicensed devices transmitting in or near the DSRC channel.   Packet collision occurs when a receiver receives packets simultaneously from two or more sources and  the message cannot be properly interpreted, rendering them useless. These packets are discarded by  the receiver. These are essentially transmitted messages that are lost.  Transmitter message suppression, also known as Clear Channel Assessment, is a feature of DSRC  whereby the transmitter waits until the channel is idle before transmitting. If the channel is not idle, the  transmitter will wait a random period and then re‐try the transmission. In the case of DSRC, if secondary  transmitters are continually using the channel and no idle period can be detected, the message  transmission by the primary device will effectively be suppressed. While in this case the wireless radio is  truly operating as designed, the effects are not desirable.  Cross‐Channel Interference, also known as Adjacent Channel Interference, is another way to describe  interference caused by out‐of‐band emissions infringing overlapping the channel of the intended  transmission.  Spectral Mask is a term used to define the shape of an RF transmission, including the relative power  levels in and out of band.   A more detailed discussion is included in the appendix.   Signal Power is the amount of energy used to radiate (i.e., push)  an RF signal. Power is measured in  decibels (dB)
From page 31...
... Page 31      the lower end by a 5 MHz guard band.  The Public Safety Channel, Ch. 184, at the upper edge of the  band is afforded higher‐power transmission, negating the impact of adjacent channel interference.  The  Control Channel, Ch. 178, sits in the middle of the spectrum and given its role facilitating the  management of the remaining four channels, mitigates interference as part of its channel use strategy.    Figure 4 ‐ Channel Allocation for the 5.9 GHz Spectrum (source: WSP USA)   Often overlooked when discussing spectrum utilization, the security elements, and the robust  environment that has been developed to support security, have a critical need for a reliable way to  exchange, renew, and revoke digital certificates.  Without the ability to authenticate messages, the  value of safety data is minimized.  The use of service channels as prescribed in the present architecture  allow for security and other critical operational features to be implemented without negatively  impacting the exchange of safety‐critical information.  Introduction of C‐V2X  With the release of 3GPP Release 14 (R14)
From page 32...
... Page 32  How the Post‐NPRM Spectrum Appears  If the recommendation of the FCC in the current NPRM is accepted, the channel configuration will  undergo a significant change.  As shown in Figure 5, the lower 45 MHz, which includes the 5 MHz guard  band, and the first four DSRC channels, including both the Safety Channel, Ch. 172, and the Control  Channel, Ch. 178, will all be re‐allocated to use by unlicensed Wi‐Fi.  The upper 20 MHz of the spectrum  will be dedicated to C‐V2X consistent with the waiver 5GAA filed with the FCC for initial use.  That leaves  a single, 10 MHz channel, Ch. 180, offered for either DSRC or C‐V2X operations, to be determined.    Figure 5 ‐ FCC NPRM Channelization of Spectrum Reallocation (source: WSP USA)   From the DSRC perspective, the thoughtful engineering to minimize adjacent channel interference is no  longer possible; the ability to maximize spectrum use for all of the services envisioned for DSRC is not  possible; and what remains is the possibility of a single channel that (according to USDOT research)
From page 33...
... Page 33 Published Test Results on Interference Exploration and testing of the 5.9 GHz and surrounding spectrum for interference and mitigating strategies is nothing new. In fact it was identified as early as 2010 when the notion of possible spectrum sharing came to light.
From page 34...
... Page 34   The design, test and activities necessary to engineer a robust environment with sufficient confidence to support ITS safety using DSRC required tens of thousands of hours and data points to produce. Observations:    Adjacent channel interference from high‐power Wi‐Fi (36 dBm EIRP)
From page 35...
... Page 35       Emergency electronic brake light;   Red light violation warning;   Curve speed warning;   Reduced speed/work zone warning; and    High‐speed platooning.  In terms of quantifying the benefits of connected vehicle technology, most analyses focus on its  potential to improve safety, mobility, and sustainability. For example, the SPaT data that is broadcast at  an intersection can address all three.   Safety: The OBU can assess the vehicle will run a red light and warn the driver.   Environment: Using the SPaT information from a corridor of RSUs, the OBU can direct the driver  to maintain a specific speed such that the driver does not need to accelerate or brake while  traversing a corridor. This increases fuel economy and decreases the carbon footprint.   Mobility: Based on connected vehicle data, the traffic signal controller can dynamically adjust  the SPaT to improve traffic flow and reduce congestion.  Most benefit analyses that have been conducted to date, focus on the benefits of connected vehicle  technology, but very few focus on the costs.   Volpe completed an analysis in April of 201418 and found that V2I applications have a very large safety  benefit potential, even when viewed as an incremental add‐on to V2V safety systems. They also found  that V2I provides additional benefits during the years when OBU penetration is low because it can be  available when only one vehicle (rather than both)  is equipped. However, the cost‐benefit discussion in  the document only included safety benefits.  In December 2015, NHTSA published the results of the independent evaluation of V2V safety  applications from the Safety Pilot Model Deployment.19 Volpe, the independent evaluator, concluded  that overall, the Safety Pilot Model Deployment demonstrated that V2V technology can be deployed in a  real‐world driving environment and that the safety applications issued warnings in the safety‐critical  driving scenarios that they were designed to address.  Several other research documents provide safety‐based deployment assistance location for curve speed  warning,20 stop‐sign gap assist,21 and red light violation warning22 applications. The purpose of each of  the documents is to give state and local agencies guidance on how to select locations for deployment for  each of the three applications to derive the greatest benefit‐to‐cost ratios.                                                                18 Volpe, Connected Vehicle Deployment Decision‐Support Analysis and stakeholder Impact Analysis: Summary of findings. April 11, 2014.  https://www.transportation.gov/sites/dot.gov/files/2020‐03/CV%20Deployment%20Decision%20Support%20‐ %20Summary%20Report%20final_0.pdf  19 Nodine, E., Stevens, S., Lam, Andy, Jackons, C. and Najm, W. Independent Evaluation of Light‐Vehicle Safety Applications Based on Vehicle‐to‐ Vehicle Communications Used in the 2012–2013 Safety Pilot Model Deployment. NHTSA. December 2015. DOT HS 812 222.  20 Safety‐Based Deployment Assistance for Location of V2I Applications Pilot: Curve Speed Warning Application.  https://www.transportation.gov/research‐and‐technology/safety‐based‐deployment‐assistance‐location‐v2i‐applications‐pilot‐curve  21 Safety‐Based Deployment Assistance for Location of V2I Applications Pilot: Stop‐Sign Gap Assist Application.  https://www.transportation.gov/research‐and‐technology/safety‐based‐deployment‐assistance‐location‐v2i‐applications‐pilot‐stop  22 Safety‐Based Deployment Assistance for Location of V2I Applications Pilot: Red‐Light Violation Warning Application.  https://www.transportation.gov/research‐and‐technology/safety‐based‐deployment‐assistance‐location‐v2i‐applications‐pilot‐red 
From page 36...
... Page 36  Another study from the University of Michigan Transportation Research Institute23 illustrates the  negative consequences of delaying deployment of DRSC. It also reinforces the need for FMVSS 150, the  proposed regulation that would have mandated V2V technology in all light weight vehicles, but was put  on long‐term action list during an administration change.   In addition to the technical research mentioned in the previous section, a significant difference of  opinion is growing in terms of cost‐benefit analysis concerning the use of this spectrum. A number of  commenters to the FCC NPRM noted that the benefits and costs section of the NPRM is "extraordinarily  one‐sided," focusing almost exclusively on the benefits of making additional spectrum available to  unlicensed use while largely ignoring the benefits that are lost by reallocating 45 MHz away from  transportation safety.  The FCC references a RAND study's estimates in terms of consumer surplus and revenue growth (the  same as GDP, fn. 96) . At $17.7 billion for 75 MHz, this estimate is much smaller and by implication  smaller still for 45 MHz at $10.6 billion ($17.7 billion x 0.6)
From page 37...
... Page 37  Conclusions  V2X applications enabled by the 5.9 GHz spectrum have traversed a deliberate time line that featured a  developmental period, testing period, and the current period of regulatory uncertainty.  Feedback submitted to the FCC concerning their proposed reallocation of the 5.9 GHz spectrum was  significantly in opposition, with safety and radio interference raised by many submitters.  This white  paper summarized comments from several different stakeholder groups, and highlighted several areas  that might be of interest (including suggestions for how to move forward, and information on possible  legal challenges that could be pursued by some of the submitters) .  The current NPRM and the comments that have been received by the FCC have also brought new  technical research and terminology to the dialogue, and this white paper has provided an overview that  demonstrates the need for additional radio interference research, as well as cost/benefit analyses.  Additional technical information on the technology, testing, and results of that testing can be found in  the appendix. 
From page 38...
... Page 38  Appendix A ‐ Technical Information  Section 3 of this white paper provides a high‐level discussion on several key elements related to the  technologies operating (or planning to operate)  in the 5.9 GHz spectrum.  To support the understanding  of those discussions, Section 3 also defines many key terms using familiar terminology.  The background  and detailed information in this appendix is intended to provide additional depth to the conversation,  taking a deeper dive on some or all of those supporting elements, elements that were fleshed out in  great detail during the drafting of this paper.    The order generally follows the order of Section 3, expanding on many of the summary items  documented in the main body, and including additional information that was purposefully omitted from  the body of the paper.  Some repetition is necessary in order to ensure the context of the original  language is maintained.  While not meant to be standalone document, a majority of the subsections in  this appendix are able to be read as such.  Current 5.9 GHz Spectrum and its Utilization  When the 5.9 GHz spectrum was first allocated to USDOT for ITS, engineers were very purposeful in  their design of DSRC devices to maximize the use of the spectrum and minimize the effects of  interference. Message exchanges needed to work well in an environment where the sender and a  receiver may be moving toward or away from one another at speeds greater than 100 miles per hour, or  where vehicles are moving at varied speeds in the same environment. To maximize the number of  vehicles that can reliably communicate with each other and with the infrastructure, engineers  considered the entire 75 MHz of the 5.9 GHz band. The result is the current DSRC design with seven (7)
From page 39...
... Page 39      Table 1. Channel Use by DSRC (Source: WSP USA)   172 (Safety Channel)
From page 40...
... Page 40  The IEEE 1609.3 Wireless Access for Vehicle Environments (WAVE)  Service Advertisements (WSA)
From page 41...
... Page 41      respects.  With V2X, however, much information can be gleaned from the data our vehicles broadcast.   Since most of the data broadcast by our vehicles are critical to the operation of vehicle safety  applications and broader mobility applications, V2X security focuses on privacy protection -- protecting  the identity of the vehicle operator and owner.    V2X messages do not contain PII or vehicle identifiable information (VII) , such as vehicle make, model,  model year, or vehicle identification number (VIN)
From page 42...
... Page 42  Twice a year, OmniAir hosts a "PlugFest", in which device manufactures, test laboratories, and test  equipment manufactures come together to evaluate their devices against OmniAir's certification test  processes. PlugFest enables device manufactures and test equipment providers to conduct certification  dry runs in a safe and secure environment, prior to submitting devices for certification.  Introduction of C‐V2X  With the release of 3GPP Release 14 (R14)  in 2017, a new technology supporting device‐to‐device  communications was introduced.  Known as Cellular Vehicle to Everything (C‐V2X)
From page 43...
... Page 43          Figure 6 ‐ C‐V2X Proposed Spectrum Plan (source: WSP USA)   C‐V2X Security  C‐V2X devices utilize the same IEEE 1609.2 certificates as DSRC devices. There is no difference between  enrolling a DSRC device or a C‐V2X device in a SCMS or in the way the certificates are utilized by the  devices and applications.  OmniAir C‐V2X Device Certification  The OmniAir Consortium is developing a C‐V2X certification program similar to their existing DSRC  program.  They are working with device manufactures, test laboratories, test tool manufactures, and  other industry stakeholders to develop appropriate test cases, leveraging existing DSRC test cases and  developing new test cases to meet relevant 3GPP R14, SAE J3161, and other requirements.  OmniAir has  been evaluating C‐V2X test cases since the 2019 spring PlugFest and plans to roll out the official program  in the fall of 2020.  Differences Between DSRC and C‐V2X  The principal difference between DSRC and C‐V2X is the communication stack Radio (physical)
From page 44...
... Page 44  Figure 7. Comparison of DSRC and C‐V2X Network Stack  V2X Support for Automated Vehicles  As previously discussed, V2X devices are omnidirectional (i.e., offer 360 degrees of coverage) .  Communicating via radio signals allows two equipped vehicles to "hear" each other and exchange  critical information -- regardless of whether the vehicles are in view, around a corner, or behind a  building or even a cornfield. This is a significant benefit for enhancing the safe operation of automated  vehicle functionality and reliability.   Without connectivity, automated vehicles are islands, much like traditional human driven vehicles are  today. They do not coordinate their actions, nor do they cooperate with each other for the overall  benefit of the "system." Vehicles with Radar, LiDAR cameras, and other sensors need to sense, or "see"  their environment. They must:   See (detect)
From page 45...
... Page 45      With connectivity, automated vehicles:   Coordinate and cooperate with each other to improve overall traffic flow;   Are no longer islands, they're part of a "system" (collective) ;   Have enhanced situational awareness (visibility of environment)
From page 46...
... Page 46  C‐V2X  3GPP is developing a "New Radio" technology as part of Release 16, designated as "Advanced C‐V2X."  The NR V2X standard is likely to employ a similar approach to the previously developed New Radio  standard for base station communication (uplink/downlink) . However, the 3GPP decided in 2018 not to  consider same‐channel coexistence between NR V2X and LTE V2X. Therefore, NR V2X is not backward  compatible. This means that for some period of time, devices will require a dual radio system, one for  R16 and one for R14, to support the new technology and the legacy LTE C‐V2X technology until all  devices and installations move to the 5G NR, R16 capability.  As with current DSRC and C‐V2X technologies, these differences are only at the radio level; SAE defined  V2X messages, interfaces to other devices (e.g., Traffic Signal Controllers)
From page 47...
... Page 47      Advanced Terms and Concepts  The primary source of concern for the proposed spectrum reallocation is the introduction of  interference, interference that will limit the effectiveness of DSRC or C‐V2X.  The following is a detailed  discussion of key terms and concepts related to the types of interferences and what constitutes  interference versus a normal waveform.    Overview of Radio Frequency Interference  Radio Frequency Interference (RFI)  is defined as any external source whose output overlaps a signal path  and produces undesired artifacts in the signal along that path. The impact of RFI can be far ranging,  resulting in an increase in error rate or in the worst case, a total loss of data. When safety of life is  dependent on receipt of messages from other vehicles and from infrastructure, as is the case with the  current V2X use cases, any loss of data can have a significant impact.  Forms of RFI  RFI is generally thought of in one of three forms: ambient or background noise, packet collision, and  transmitter message suppression. Separate or in combination, these forms of RFI prevent the reliable  exchange of data between a transmitter and a receiver. The following describes each and their specific  impact.   Ambient noise is the culmination of all unwanted signals, both in‐band and adjacent, which  reduces the ability of weak signals from distant transmitters to be received. Ambient noise is  typically a result of unlicensed devices transmitting in or near the DSRC channel.    Packet collision occurs when a receiver receives packets simultaneously from two or more  sources and the message cannot be properly interpreted, rendering them useless. These packets  are discarded by the receiver. These are essentially transmitted messages that are lost.   Transmitter message suppression, also known as Clear Channel Assessment, is a feature of the  Carrier Sense Multiple Access/Collison Avoidance (CSMA/CA)
From page 48...
... Page 48  power point or floor of the spectral mask is considered to be ‐40 dBr, a point where the power level has  been reduced by 10,000 times.   The second principle is to understand the characteristic of a radio frequency (RF)  signal. As seen in  Figure 8, this is a waveform for a typical U‐NII‐3 802.11ac signal. The waveform of a transmitted RF  signal does not behave like a square wave with an infinite (completely vertical)
From page 49...
... Page 49  Published Test Results on Interference   As noted in the main body of the white paper, five (5)  key reports white papers served as the basis of  our summary of the state of testing.  The following is a brief overview and relevant findings from each of  the document reviewed.  The summary of the facts and observations from each may be found in the  main body of the white paper.  FCC Report TR 17‐006 – Phase 1 Testing Results  The first significant result of spectrum sharing tests is embodied in FCC Report TR 17‐006, published in  October 2018.29 This report captures the results and summarization of the completed Phase I testing as  recommended in NPRM 16‐68 (June 1, 2016)
From page 50...
... Page 50  with vehicles moving at different speeds or directions. Data collected from these measures were also  intended to inform a qualitative assessment of adjacent channel rejection of DSRC.   Impairing Traffic Safety from Changes in the Safety Band: Introduction of Interference from Unlicensed  Users  This August 2019 Draft Report from USDOT, published in March of 2020, puts the impact of the prior  and ongoing interference testing, and the proposed re‐channelization, into context by identifying the  expected impact to the current, demonstrated spectrum use and resulting safety applications as  provided by DSRC.30 This includes the exchange of BSMs between vehicles, as well as the use of SPaT  and other safety‐critical messages. This report further explores the functional impact of re‐ channelization to the use of the service and control channels, as prescribed by the standards governing  DSRC.  When the approach to implementing DSRC was designed, particular attention was paid to how the 75  MHz spectrum was used to ensure that all of stated goals of this spectrum were used. In the process,  specific uses were assigned to specific channels, and along with that power limits and spectral masks  were developed for each channel, to ensure that they themselves would not interfere with one another.   With the current FCC NPRM intending to compress all of the DSRC communications into a single 10 MHz  channel, the RF design that had been performed previously and rigorously tested to ensure reliable and  robust communications, without interference, is no longer applicable, and will require new design  considerations and testing.   USDOT DSRC‐U‐NII‐3 Sharing & Spectrum Interference Testing – Draft Report  In March 2020, USDOT released the January 2020 Draft Report on USDOT DSRC‐U‐NII‐3 Sharing &  Spectrum Interference Testing.31 Unlike FCC Report TR 17‐006 which used prototype U‐NII‐4 devices,  devices that don't yet exist commercially, this report considers the impacts of existing Wi‐Fi devices,  known as U‐NII‐3, if they are allowed to share or operate adjacent to DSRC in unlicensed spectrum.  This  report was intended to serve as a baseline for the existing wireless environment, serving as a pre‐cursor  to the Phase II U‐NII‐4 testing prescribed in NPRM 16‐68, and evaluating co‐channel radio performance.  In the process of conducting this testing, adjacent channel interference was also observed and recorded.   Most significant of the findings was that a U‐NII‐3 Wi‐Fi access point, located as far as 100 meters away  or more, and even if operated inside a building, or on an adjacent channel, caused significant  interference with DSRC:   This represents a consequential impact to safety given that DSRC was designed to provide  situational awareness in a safety zone defined by a 300‐meter radius around a vehicle. Co‐ channel sharing with Wi‐Fi or any unlicensed radio service with similar power and duty cycle as  Wi‐Fi will not be possible without a robust and reliable sharing mechanism that defers to the  30 Arnold, James A., et. al, Impairing Traffic Safety from Changes in the Safety Band: Introduction of Interference from Unlicensed Users, Pre‐ Final Version, August 2019, https://www.transportation.gov/sites/dot.gov/files/2020‐03/Rechannelization%20Inteference‐ 01AUGUST2019_FINAL_0.pdf  31 Arnold, James A., et. al, USDOT Spectrum Sharing Test Report: Effects of Unlicensed‐National Information Infrastructure‐3 (U‐NII‐3)  Devices  on Dedicated Short‐Range Communications (DSRC)
From page 51...
... Page 51  high priority safety messages. Similarly, a reallocation of channels would need to provide guard  bands to protect both radio services from adjacent channel interference from the other.  The report goes on to provide several additional findings related to both co‐channels sharing, and  adjacent channel interference caused by Wi‐Fi that, if present, would severely impact the safety  capabilities of DSRC.   USDOT Analysis of FCC Phase I Sharing Report Out‐of‐Band Emissions for U‐NII Adjacent and Next  Adjacent Channel   In March 2020, USDOT released a Pre‐Final Version of their findings related to a deeper exploration of  the test results captured by the FCC during the FCC's Phase I testing.32 With C‐V2X now part of the  equation, and with the latest NPRM allocating an individual channel each  for DSRC and C‐V2X, this  further exploration by USDOT considers the impact to both, assuming a 10 MHz channel (Ch. 180)  for  DSRC, and a 20 MHz channel (Ch. 183)
From page 52...
... Page 52  The process included collection of baselines DSRC performance data, introducing Wi‐Fi on adjacent,  overlapping channels, and comparing the results. Test results showed the potential for cross‐channel  interference that would impact DSRC up to 500 meters or more, but specifically in the 200–300m range.   It further demonstrated that the closer the waveform conformed to the spectral mask requirements for  Wi‐Fi devices, the greater the cross‐channel interference impact was. 

Key Terms



This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.