National Academies Press: OpenBook
« Previous: Front Matter
Suggested Citation:"1 Introduction." National Research Council. 2011. Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education: Summary of Two Workshops. Washington, DC: The National Academies Press. doi: 10.17226/13099.
×

1
Introduction

Today, a quiet revolution is under way in the teaching of undergraduate science, mathematics, engineering, and technology. Courses that have resembled nothing so much as their 19th century precursors are beginning to change, as students and instructors realize that employment and citizenship in the 21st century will require radically different kinds of skills and knowledge. A new generation of faculty is questioning the contemporary constraints of academic life and looking at new ways to balance the teaching of students with other priorities. Departments and institutions are acknowledging that their responsibilities extend beyond producing the next generation of scientists, engineers, mathematicians, and technicians; they are recognizing that the challenge also is to equip students with the scientific and technical literacy and numeracy required to play meaningful roles in society. (National Research Council, 1996, p. 1)

In the mid-to-late 1990s, the National Research Council (NRC) and the National Science Foundation (NSF) wrote reports on the state of undergraduate education in science, technology, engineering, and mathematics—the disciplines collectively referred to as STEM (see National Research Council, 1996, 1999; National Science Foundation, 1996). As the quoted passage above suggests, these reports reflected past innovations and encouraged future innovations in STEM education at 2-year and 4-year post secondary institutions. In the decade after their release, NSF, other government agencies, and several private foundations dedicated hundreds of millions of dollars to improve the quality of STEM undergraduate education.

Suggested Citation:"1 Introduction." National Research Council. 2011. Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education: Summary of Two Workshops. Washington, DC: The National Academies Press. doi: 10.17226/13099.
×

Since then, numerous teaching, learning, assessment, and institutional innovations in undergraduate STEM education have emerged. Because virtually all of these innovations have been developed independently of one another, their goals and purposes vary widely. Some focus on making science accessible and meaningful to the vast majority of students who will not pursue STEM majors or careers; others aim to increase the diversity of students who enroll and succeed in STEM courses and programs; still other efforts focus on reforming the overall curriculum in specific disciplines. In addition to this variation in focus, these innovations have been implemented at scales that range from individual classrooms to entire departments or institutions.

PROJECT ORIGIN

By 2008, partly because of this wide variability, it was apparent that little was known about the feasibility of replicating individual innovations or about their potential for broader impact beyond the specific contexts in which they were created. The research base on innovations in undergraduate STEM education was expanding rapidly, but the process of synthesizing that knowledge base had not yet begun. If future investments were to be informed by the past, then the field clearly needed a retrospective look at the ways in which earlier innovations had influenced undergraduate STEM education.

To address this need, NSF asked the NRC to convene an ad hoc steering committee to plan and implement a series of two public workshops focused on a thoughtful examination of the state of evidence of impact and effectiveness of selected STEM undergraduate education innovations. The steering committee was appointed and charged with identifying selection criteria and selecting STEM innovation “candidates” from reform efforts in teaching, curriculum, assessment, and faculty development. Of particular interest were STEM innovations in which the evidence of impact is strong and rich enough to analyze its effect on the “uptake” and sustainability of an innovation over time. The committee adopted the term “promising practices” to refer to innovations in STEM learning, teaching, and assessment.

The first workshop took place in June 2008 and focused on the challenge of aligning the learning goals of—and evidence of effectiveness for—promising practices within and across the science disciplines. In the second workshop, held in October 2008, participants delved more deeply into a select group of the promising practices in undergraduate STEM education that came to light at the June meeting. In planning both workshops, the committee focused in particular on innovations associated with the first two years of undergraduate STEM education. The innovations discussed in October represent a small proportion of the many promising practices

Suggested Citation:"1 Introduction." National Research Council. 2011. Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education: Summary of Two Workshops. Washington, DC: The National Academies Press. doi: 10.17226/13099.
×

in undergraduate STEM education—time constraints during the workshop, the availability of promising practices with known evidence of effectiveness, and the availability of speakers influenced the innovations that were discussed at the October meeting.

In addition to planning a broad exploration of the evidence, the committee sought to connect education researchers from different disciplinary fields and to provide foundational information for a parallel NSF-funded initiative by the Wisconsin Center for Education Research. That initiative, Engaging Critical Advisors to Formulate a New Framework for Change: Expansion of “Toward a National Endeavor to Marshal Post secondary STEM Education Resources to Meet Global Challenges,” focused on future directions for STEM and aimed to identify new strategies for organizing and implementing STEM undergraduate education practices. It underscored the need for the STEM community to take stock of what has been learned and to attend to the evidence base for drawing conclusions.

REPORT OVERVIEW

This volume summarizes the two NRC workshops on promising practices in undergraduate STEM education. Chapters 2 and 3 summarize the first workshop: Chapter 2 focuses on the link between learning goals and evidence, and Chapter 3 presents a range of promising practices at the individual, faculty, and institutional levels. Subsequent chapters address the topics that were taken up in the second workshop, which involved deeper explorations of selected promising practices in STEM undergraduate education. Chapters 4-6 address a range of classroom-based promising practices: scenario-, problem-, and case-based teaching and learning (Chapter 4); assessments (Chapter 5), and improving student learning environments (Chapter 6). Chapter 7 focuses on professional development for future faculty, new faculty, and veteran faculty. The volume concludes with a broader examination of the barriers and opportunities associated with systemic change (Chapter 8).

It is important to be specific about the nature of this report, which documents the information presented in the workshop presentations and discussions. Its purpose is to lay out the key ideas that emerged from the two workshops and that should be viewed as an initial step in examining the research. The report is confined to the material presented by the workshop speakers and participants. Neither the workshop nor this summary is intended as a comprehensive review of what is known about the topic, although it is a general reflection of the field. The presentations and discussions were limited by the time available.

This report was prepared by a rapporteur and does not represent findings or recommendations that can be attributed to the steering committee.

Suggested Citation:"1 Introduction." National Research Council. 2011. Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education: Summary of Two Workshops. Washington, DC: The National Academies Press. doi: 10.17226/13099.
×

Indeed, the report summarizes views expressed by workshop participants, and the committee is responsible only for its overall quality and accuracy as a record of what transpired at the workshops. Also, the workshops were not designed to generate consensus conclusions or recommendations but focused instead on the identification of ideas, themes, and considerations that contribute to understanding.

Suggested Citation:"1 Introduction." National Research Council. 2011. Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education: Summary of Two Workshops. Washington, DC: The National Academies Press. doi: 10.17226/13099.
×
Page 1
Suggested Citation:"1 Introduction." National Research Council. 2011. Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education: Summary of Two Workshops. Washington, DC: The National Academies Press. doi: 10.17226/13099.
×
Page 2
Suggested Citation:"1 Introduction." National Research Council. 2011. Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education: Summary of Two Workshops. Washington, DC: The National Academies Press. doi: 10.17226/13099.
×
Page 3
Suggested Citation:"1 Introduction." National Research Council. 2011. Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education: Summary of Two Workshops. Washington, DC: The National Academies Press. doi: 10.17226/13099.
×
Page 4
Next: 2 Linking Learning Goals and Evidence »
Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education: Summary of Two Workshops Get This Book
×
Buy Paperback | $21.00 Buy Ebook | $16.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Numerous teaching, learning, assessment, and institutional innovations in undergraduate science, technology, engineering, and mathematics (STEM) education have emerged in the past decade. Because virtually all of these innovations have been developed independently of one another, their goals and purposes vary widely. Some focus on making science accessible and meaningful to the vast majority of students who will not pursue STEM majors or careers; others aim to increase the diversity of students who enroll and succeed in STEM courses and programs; still other efforts focus on reforming the overall curriculum in specific disciplines. In addition to this variation in focus, these innovations have been implemented at scales that range from individual classrooms to entire departments or institutions.

By 2008, partly because of this wide variability, it was apparent that little was known about the feasibility of replicating individual innovations or about their potential for broader impact beyond the specific contexts in which they were created. The research base on innovations in undergraduate STEM education was expanding rapidly, but the process of synthesizing that knowledge base had not yet begun. If future investments were to be informed by the past, then the field clearly needed a retrospective look at the ways in which earlier innovations had influenced undergraduate STEM education.

To address this need, the National Research Council (NRC) convened two public workshops to examine the impact and effectiveness of selected STEM undergraduate education innovations. This volume summarizes the workshops, which addressed such topics as the link between learning goals and evidence; promising practices at the individual faculty and institutional levels; classroom-based promising practices; and professional development for graduate students, new faculty, and veteran faculty. The workshops concluded with a broader examination of the barriers and opportunities associated with systemic change.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!