National Academies Press: OpenBook

Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future (2012)

Chapter: Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States

« Previous: References
Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×

Appendix A

Vertical Land Motion and Sea-Level Data Along the West Coast of the United States

As summarized in Chapter 4 (“Analysis of West Coast Tide Gage Records”), the committee determined rates of historical sea-level change along the California, Oregon, and Washington coasts using 12 tide gages. The rates were then corrected for vertical land motion and atmospheric pressure effects to compare sea-level rise along the west coast of the United States with the global mean sea-level rise. Details of these analyses are given below.

VERTICAL LAND MOTION FROM CONTINUOUS GPS

Tide gages are generally corrected for vertical land motions using glacial isostatic adjustment (GIA) models. However, GIA models capture only a small component of the total vertical land motion in coastal areas that are tectonically active or undergoing subsidence or uplift associated with sediment compaction and/or fluid withdrawal or recharge. The Global Positioning System (GPS) began to be used to adjust tide gage data for vertical land motion around 1997 (Ashkenazi et al., 1993; Nerem et al., 1997; Zerbini, 1997). Continuous GPS (CGPS) records along the U.S. west coast have been available since the early 1990s, although significantly more stations have been installed since 2003 as part of the National Science Foundation’s Plate Boundary Observatory.1 Continuous GPS solutions allow vertical land motions to be estimated from shorter temporal records and with more confidence than episodic sampling of the land motion signal. The committee used CGPS data to estimate and remove the vertical land motion component from the sea levels recorded by west coast tide gages. The locations of the tide gages and CGPS stations analyzed in this report are shown in Figure A.1.

Several published GPS solutions are available for estimating west coast vertical land motions, each of which uses a different number of stations, timespan, and/or processing software (e.g., Donnellan et al., 1993a,b; Dong et al., 1998; Argus et al., 1999, 2005; Bennett et al., 1999; Argus and Gordon, 2001; Spinler et al., 2010). The committee used the Scripps Orbit and Permanent Array Center (SOPAC) velocity model,2 which is a routinely updated, publicly available solution with the longest time span for each station as well as the greatest GPS station density for the U.S. west coast. The SOPAC processing details are described in Nikolaidis (2002). Briefly, GAMIT and GLOBK software (Dong et al., 1998) are used to calculate daily site positions, which are input to the velocity estimation model. Using the entire time series for a specific site, the model accounts for offsets, linear velocity, annual and semi-annual fluctuations (for stations with at least 2 years and 1 year of data, respectively), and post-seismic relaxation. Noise analysis (Williams, 2003) using white noise plus flicker noise covariances provides realistic uncertainty estimates.

A vertical land motion value was assigned to each tide gage site by taking the closest CGPS station with a velocity estimate within 15 km from the tide gage. The

__________

1 See <http://pboweb.unavco.org/>.

2 See <http://sopac.ucsd.edu/processing/refinedModelDoc.html>.

Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×

img

FIGURE A.1 Map showing names and locations of the 12 tide gages and CGPS stations analyzed in this report.

Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×

15-km value is somewhat arbitrary, but it is similar to the distance threshold typically used in previous joint GPS and tide gage analyses (e.g., Mazzotti et al., 2007; Wöppelmann et al., 2007). The committee’s estimated rates of vertical land motions are given in Table A.1. Positive values of vertical land motion mean that the land is rising. Table A.1 also reports the standard deviation of vertical land motion within a 15-km radius of each tide gage station. This value was used in the uncertainty estimate described below.

To test the importance of the CGPS solution on the calculated rate of vertical land motion, the committee compared the SOPAC-derived rates with rates published in the literature. Although most published reports for coastal areas south of the Mendocino Triple Junction present only horizontal rates (e.g., Spinler et al., 2010), the SOPAC rates for Cascadia are similar to vertical rates for the same sites published in Mazzotti et al. (2008). Mazzotti et al. (2008) estimated rates using different GPS processing software (BERNESE) than that used by SOPAC. The correspondence in rates produced by two independent approaches suggests that the committee’s results are reasonable.

Uncertainty in Vertical Land Motion

The estimated error in the vertical land motion adjustment to the tide gage records can be expressed as eTG = ev + esv + eref, where ev is the error in the velocity estimation, is the error associated with spatial variability in vertical land motion between a CGPS station and the tide gage, and eref is the error associated with the definition of the GPS reference frame. Of these error sources, ev is well defined (Nikolaidis, 2002; Williams et al., 2004) and is taken to be the vertical land motion error associated with the nearest CGPS station to the tide gage (and fifth and sixth columns of Table A.1).

Error in the spatial variability of vertical land motion between a CGPS station and a tide gage, esv, is locally variable and cannot be determined without more detailed studies. For example, Brooks et al. (2007) reported a variation of ~ ± 3 mm yr-1 for esv in the Los Angeles Basin. To estimate esv, the committee used the standard deviation of vertical land motion within a 15-km radius of each tide gage (right two columns in Table A.1). Using this value, rather than the formal error estimate associated with any given GPS station’s velocity, seemed justifed, given the potential for significant variability in vertical land motion at the km scale. For instance, the Santa Monica tide gage has seven CGPS stations within a 15-km radius, with vertical land motion estimates ranging from -1.5 mm yr-1 to 1.8 mm yr-1. The nearest CGPS station, WRHS, has the minimum vertical land motion estimate (-1.5 mm yr-1) and may be the most appropriate value for the correction. However, confidence in this value is diminished by the local spatial variability, which is reflected in the 15-km standard deviation value (Table A.1).

The reference frame error (eref) is a classical geodetic problem (Strang and Borre, 1997). The SOPAC

TABLE A.1 Parameters for Vertical Land Motion Correction

Vertical Land Motion,
Nearest Station
Vertical Land Motion,
15-km Radiusa
Tide Gage Nearest CGPS Station Start Date Distance (km) Rate (mm yr-1) Error (1σ) Rate (mm yr-1) Error (1σ)
Friday Harbor SC02 2001.860 0.70 0.90 0.70
Neah Bay NEAH 1996.000 7.71 3.00 0.40
Seattle SEAT 1996.000 6.25 0.20 0.50 -1.10 0.94
Astoria TPW2 2000.247 1.08 0.60 0.00 1.20 0.40
Crescent City PTSG 1999.820 5.85 2.60 0.40
San Francisco TIBB 1994.460 10.23 -1.40 0.50 -1.44 1.97
Alameda P224 2005.174 12.90 -0.20 0.60 -1.58 1.20
Port San Luis P524 2007.048 14.50 1.70 0.30
Santa Monica WRHS 1999.770 9.36 -1.50 0.60 -0.01 1.34
Los Angeles VTIS 1998.938 2.54 -0.50 0.50 -0.27 2.34
La Jolla SIO3 1993.522 0.26 2.10 0.50 0.73 1.11
San Diego P475 2007.601 9.17 -3.00 0.20 -4.50 0.81

a Rates and errors are not reported for 15-km areas with only 1 CGPS station.

Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×

TABLE A.2 Tide Gage Records from PSMSL, Corrected for Atmospheric Pressure and Vertical Land Motion

Trend (mm yr-1) Confidence Limit Trend (mm yr-1)
Tide Gage Latitude Longitude Period Original
Record
With IB
Adjustment
With IB
and GPS
Adjustment
Upper
95%
Lower
95%
With IB
and GIA
Adjustment
Friday Harbor 48.550 -123.000 1934–2008 +1.04 +1.14 +2.04 +3.44 +0.64 +1.31
Neah Bay 48.367 -124.617 1934–2008 -1.77 -1.65 +1.35 +2.22 +0.48 -1.33
Seattle 47.760 -122.333 1900–2008 +2.01 +2.10 +2.30 +3.29 +1.31 +1.67
Astoria 46.217 -123.767 1925–2008 -0.38 -0.30 +0.30 +0.61 -0.01 -1.37
Crescent City 41.750 -124.200 1933–2008 -0.73 -0.65 +1.95 +2.78 +1.12 -0.87
San Franciscoa 37.800 -122.467 1900–2008 +1.92 +1.98 +0.58 +0.69 +0.47 +1.99
Alameda 37.767 -122.300 1939–2008 +0.70 +0.82 +0.62 +1.82 -0.58 +0.85
Port San Luis 35.167 -120.750 1945–2008 +0.68 +0.76 +2.46 +3.10 +1.82 +0.68
Santa Monica 34.017 -118.500 1933–2008 +1.41 +1.44 -0.09 +0.72 -0.90 +1.43
Los Angeles 33.717 -118.267 1923–2008 +0.84 +0.83 +0.33 +1.32 -0.66 +0.80
La Jolla 32.867 -117.250 1924–2008 +2.08 +2.07 +4.17 +5.17 +3.17 +2.02
San Diego 32.717 -117.167 1906–2008 +2.04 +2.07 -0.96 +0.03 -1.95 +2.01

NOTE: IB = inverse barometer.

a Although the San Francisco record starts in 1854, the IB correction starts at 1900.

velocity solution uses the International Terrestrial Reference Frame’s ITRF2005 realization,3 one of the most accurate and rigorously constrained versions of a global reference frame. ITRF2005 was developed from a combination of space geodetic observations from four independent platforms: GPS, Very Long Baseline Interferometry, Satellite Laser Ranging, and Doppler Orbit Determination and Radio-Positioning Integrated on Satellite. ITRF2005 is an improvement over previous frame realizations because it uses better antenna phase center models and its use of time series enables treatment of nonlinear and discontinuous behavior. A detailed description of the ITRF2005 realization appears in Altamimi et al. (2007).

Altamimi et al. (2007) suggested that the disagreement in origin definition between ITRF2005 and ITRF2000 (the previous frame realization) could be used as a metric of the origin accuracy. They reported a translation misfit of 0.1 mm, 0.8 mm, and 5.8 mm along the x-, y-, and z-axes, respectively, with a formal error of 0.3 mm for each component. The misfit of translation rate was reported as 0.2 mm yr-1, 0.1 mm yr-1, and 1.8 mm yr-1, with a formal error of 0.3 mm yr-1 (Altamimi et al., 2007). Mazzotti et al. (2007), using ITRF2000, estimated that their vertical land motion values could contain a reference frame bias of -0.5–0.8 mm yr-1. Given these two results and the difficulty of estimating eref in an absolute sense, the committee adopted a conservative value of ± 1 mm yr-1 for eref. The committee’s error estimates for the vertical land motion correction to the tide gages are given in Table A.2.

ANALYSIS OF SEA-LEVEL TREND FROM TIDE GAGES

Sea-level records are archived at the Permanent Service for Mean Sea Level (PSMSL).4 PSMSL reduces the data reported from each tide gage to monthly mean values and adjusts them to a common datum to produce a revised local reference dataset (Woodworth and Player, 2003). The sea-level data used in this report are all revised local reference datasets. PSMSL gives sea level in mm and, to avoid negative numbers, adds 7,000 mm to each monthly mean.

The committee examined the sea-level records from the 28 PSMSL tide gages along the west coast of the United States (Table A.2). For its analysis, the committee chose 12 tide gages that are currently operating and have records at least 60 years long. Shorter records are subject to decadal bias (Box A.1; see also “Tide Gage Measurements” in Chapter 2) and were not analyzed. Records with gaps in the data such as Santa Monica were simply treated as nonuniformly spaced in time.

__________

3 See <http://itrf.ensg.ign.fr/>.

4 See <http://psmsl.org>.

Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×

BOX A.1
Effect of Record Length on Sea-Level Trend

As noted in Chapter 2, different lengths of record yield different sea-level trends because of decadal variability. The committee investigated the effect of record length on the rate of sea-level rise by fitting a linear trend over varying lengths of record from the San Francisco tide gage. The top figure shows the trends based on a starting year of 1900 and using longer and longer record lengths. The resulting rates of sea-level rise range from 1.12 mm yr-1 to 2.10 mm yr-1. The bottom figure shows the reverse analysis, fixing the fit line at 2009 and adding progressively older data. For this case, rates of sea-level rise range from -0.05 mm yr-1 to 2.66 mm yr-1, and the recent (1980–1990) downtrend in sea level noted in Bromirski et al. (2011) can be seen. The wide range in sea-level trends depending on the starting time and the length of the record also shows the difficulty of describing a complex time-varying signal with a simple linear relationship.

img

FIGURE Sea-level trends for the San Francisco tide gage data as a function of data length. (Top) Straight line fits from 1900. (Bottom) Straight line fits from 2009.

Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×

Although this approach has little or no effect on the estimated rate of sea-level rise, it slightly reduces the uncertainty (variability) when the gaps are relatively long.

The committee began the analysis of the PSMSL data by removing the 7,000 mm offset, thus reintroducing negative values. Long-term trends for the original tide gage data were obtained by fitting a straight line to the monthly average values for each record using a least squares method expressed as yt = mxt + b, where yt (in mm) is the monthly mean tide level at time xt, where t = 1, 2,…, N, and N equals the total number of observations in the record. The slope m, which represents the relative sea-level rise, is given in mm yr-1, and b is the y-intercept in mm. The linear sea-level trends (m) were determined using the entire record length of each tide gage.

Adjustments to the Original Tide Gage Trends

The committee adjusted the original tide gage trends to remove the effects of atmospheric pressure and vertical land motions, as described below.

Atmospheric Pressure

In many studies of sea-level rise, tide gage records are not adjusted for the barotropic response of the ocean due to variations in atmospheric pressure. However, observations suggest that an ocean response to atmospheric pressure loads is expected everywhere except the tropics and western boundary current extension regions (Wunsch and Stammer, 1997). The so-called inverse barometer (IB) adjustment is a good approximation of the barotropic response of sea level.

The committee adjusted the 12 tide gage records for the inverse barometer effect following the procedures of Ponte et al. (1991). The adjustment can be expressed as (P(t) - P(t)ref)/pg, where p is the density of sea water and g is the acceleration of gravity. The term -1/pg is a scale factor that converts local air pressure anomalies to water level equivalent with a value of -9.948 mm mb-1. P(t) represents the monthly averaged sea-level pressure for a specific tide gage and month at time t, and P(t)ref is the mean surface pressure taken over the global ocean for the same month. This adjustment is then subtracted from the monthly averaged sea level for that month.

Sea-level pressure data were obtained from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) 20th Century Reanalysis V2 database.5 These data are available on a 2° × 2° global grid from 1871 through 2008. The sea-level pressure for each tide gage (P(t)) was extracted from the nearest 2° × 2° box. The mean ocean surface pressure for each month (P(t)ref) was obtained by averaging over all 2° × 2° boxes. The results of the IB adjustment are shown in Table A.2. The effect of the adjustment is relatively small, changing the slope by less than 10 percent in the majority of cases. The changes appear to be smallest in southern California.

Vertical Land Motion

The tide gage records were corrected for local site motion using GPS data (see “Vertical Land Motion from Continuous GPS” above). The CGPS rates of vertical land motion were simply added to the tide gage rate of relative sea-level rise (the slope m) to obtain a new local motion-adjusted record. The GPS data extend back in time only one to two decades, while some tide gage records are more than 100 years long. For correction purposes, the committee made the crucial assumption that the GPS adjustment remains constant over the entire length of the sea-level record. This assumption is more likely valid where the vertical land motion is dominated by GIA, but it is open to question where subsidence or uplift are the primary geophysical causes. In most cases, the GPS adjustments are significantly larger than the GIA adjustments, confirming the importance of tectonics and subsidence to relative sea-level rise in the area (Table A.2).

The GPS adjustment is generally larger than the IB adjustment. The magnitude of the two adjustments varies among tide gages, with relatively large changes to the original trend in a few places due primarily to the GPS adjustment. For example, these corrections changed the slopes from -1.77 mm yr-1 to +1.35 mm yr-1 at Neah Bay, from -0.73 mm yr-1 to +1.95 mm yr-1 in Crescent City, and from +2.04 mm yr-1 to -0.96 mm yr-1 at San Diego (Table A.2). The large change at San Diego underscores the importance of small-scale spatial variability in vertical motion in the region.

__________

5 See <www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.html>.

Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×

Results

Figure A.2 shows the distributions of slopes for the original tide gage data, the data with IB adjustments, and the data with IB and GPS adjustments for the 12 tide gages. The mean value of all slopes is 0.82 mm yr-1 for the original sea-level records, 0.88 mm yr-1 with the IB adjustment, and 1.25 mm yr-1 with the IB and GPS adjustments. The standard deviation increases from about 1.23 mm yr-1 to 1.39 mm yr-1 when the GPS adjustment is included. This slight increase suggests that the local variability in vertical motion is often significant and uncorrelated with the vertical motion experienced by the tide gage. It also may indicate that vertical land motions over the past one or two decades are not representative of the ground motion over the lifetime of the tide gage.

To suppress the influence of possible outliers, the slopes were plotted as a function of latitude then fit with robust or weighted lines of regression (solid red line in Figure A.3). In weighted regression, values that lie far from the line of regression are given less weight than values that lie closer to the line. The weighted regression employs iteratively reweighted least squares with a selection of weighting functions depending on what form and how much weighting is desired (Holland and Welsch, 1977). The form of weighting chosen was the Welsch weight function. The weights, w(r), are given by exp (-r2), where r is related to the distance between a given value and the line of regression. For a more detailed explanation, see Huber (1981). The process for deciding what weighting to use is somewhat subjective, but tests using several different weight functions did not significantly affect the results. The calculated slopes seldom varied by more than ± 10 percent.

To examine the variation in sea-level trends along the coastline, a weighted regression was applied to all 12 gages. The linear trend in the weighted regression for the entire coast shows a significant increase in slope from south to north (Figure A.3, solid red line), whereas the original data (dashed red line) show a decrease from south to north. The change in trend reflects vertical land motion along the coast.

Uncertainty in Adjusted Sea-Level Trends

The 95 percent confidence limits in the sea-level trends were calculated using measures of uncertainty for the original records and the GPS adjustments. For data where the individual observations are statistically independent, confidence limits are calculated using the student’s t distribution. However, with time series, the observations are generally not independent, so the equivalent number of independent observations or degrees-of-freedom (DOFs) is often far less than the total number of observations in the original time series. For DOFs greater than 120, the t values do not change and no adjustment for serial correlation is required.

img

FIGURE A.2 Distributions of slopes for the original relative sea-level data (left), with inverse barometer (IB) corrections (center), and with IB plus GPS corrections (right).

Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×

img

FIGURE A.3 Slopes of linear trends for tide gage records and weighted lines of regression. Slopes for original tide gage records (stars), for IB adjusted records (+), and for IB and GPS adjusted records (o) are shown as a function of latitude from north to south, together with weighted linear trends for the entire coast for the original data (dotted red line) and for the GPS-adjusted data (solid red line).

Several approaches are used to estimate the DOFs when the data are serially correlated, as they are in this case. The committee used the Mitchell et al. (1966) approach to calculate the DOFs for each record, and found that the DOFs were greater than 120 in all cases. Calculating the 95 percent confidence limits reduces to the slope ± 1.96 (from the t table) times the square root of the estimated variance of the trend. The confidence interval is thus equal to the difference between the upper and lower confidence limits.

Estimating the confidence limits for the GPS-adjusted trends requires not only a measure of uncertainty associated with the tide gage records but also a measure of uncertainty associated with the GPS data, in this case, the standard deviations. Assuming that the uncertainties for the slopes of the tidal records and the GPS data are independent, the combined uncertainty is equal to the square root of the sum of the variances associated with each. Multiplying this value by 1.96 yields the 95 percent confidence limits. The upper and lower confidence limits are included in Table A.2. In some cases, the uncertainties associated with the GPS data far exceed those associated with the tide gage data.

REFERENCES

Altamimi, Z., X. Collilieux, J. Legrand, B. Garayt, and C. Boucher, 2007, ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters, Journal of Geophysical Research, 112, B09401, doi:10.1029/2007JB004949.

Argus, D.F., and R.G. Gordon, 2001, Present tectonic motion across the Coast Ranges and San Andreas Fault System in central California, Geological Society of America Bulletin, 113, 1580-1592.

Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×

Argus, D.F., M.B. Heflin, A. Donnellan, F.H. Webb, D. Dong, K.J. Hurst, D.C. Jefferson, G.A. Lyzenga, M.M. Watkins, and J.F. Zumberge, 1999, Shortening and thickening of metropolitan Los Angeles measured and inferred by using geodesy, Geology, 27, 703-706.

Argus, D.F., M.B. Heflin, G. Peltzer, F. Crampe, and F.H. Webb, 2005, Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles, Journal of Geophysical Research, 110, B04401, doi:10.1029/2003JB002934.

Ashkenazi, V., R.M. Bingley, G.M. Whitmore, and T.F. Baker, 1993, Monitoring changes in mean sea-level to millimetres using GPS, Geophysical Research Letters, 20, 1951-1954.

Bennett, R.A., J.L. Davis, and B.P. Wernicke, 1999, Present-day pattern of Cordilleran deformation in the western United States, Geology, 27, 371-374.

Bromirski, P.D., A.J. Miller, R.E. Flick, and G. Auad, 2011, Dynamical suppression of sea level rise along the Pacific Coast of North America: Indications for imminent acceleration, Journal of Geophysical Research, 116, C07005, doi:10.1029/2010JC006759.

Brooks, B.A., M.A. Merrifield, J. Foster, C.L. Werner, F. Gomez, M. Bevis, and S. Gill, 2007, Space geodetic determination of spatial variability in relative sea level change, Los Angeles Basin, Geophysical Research Letters, 34, L01611, doi:10.1029/2006GL028171.

Dong, D., T.A. Herring, and R.W. King, 1998, Estimating regional deformation from a combination of space and terrestrial geodetic data, Journal of Geodesy, 72, 200-214.

Donnellan, A., B.H. Hager, and R.W. King, 1993a, Discrepancy between geological and geodetic deformation rates in the Ventura Basin, Nature, 366, 333-336.

Donnellan, A., B. Hager, R. King, and T. Herring, 1993b, Geodetic measurement of deformation in the Ventura Basin region, southern California, Journal of Geophysical Research, 98, 21,727-21,739.

Holland, P.W., and R.E. Welsch, 1977, Robust regression using iteratively reweighted least-squares, Communications in Statistics: Theory and Methods, A6, 813-827.

Huber, P.J., 1981, Robust Statistics, John Wiley & Sons, New York, 308 pp.

Mazzotti, S., A. Lambert, N. Courtier, L. Nykolaishen, and H. Dragert, 2007, Crustal uplift and sea level rise in northern Cascadia from GPS, absolute gravity, and tide gauge data, Geophysical Research Letters, 34, L15306, doi:10.1029/2007GL030283.

Mazzotti, S., C. Jones, and R.E. Thomson, 2008, Relative and absolute sea level rise in western Canada and northwestern United States from a combined tide gauge-GPS analysis, Journal of Geophysical Research, 113, C11019, doi:10.1029/2008JC004835.

Mitchell, Jr., J.M., B. Dzerdzeevskii, H. Flohn, W.L. Hofmeyr, H.H. Lamb, K.N. Rao, and C.C. Walléen, 1966, Climate Change, Report of a working group of the Commission for Climatology, Technical Note 79, World Meteorological Organization, WMO No. 195, Geneva, Switzerland, 79 pp.

Nerem, R.S., T.M. van Dam, and M.S. Schenewerk, 1997, A GPS network for monitoring absolute sea-level in the Chesapeake Bay: BAYONET, in Proceedings of the Workshop on Methods for Monitoring Sea Level: GPS and Tide Gauge Benchmark Monitoring and Altimeter Calibration, Jet Propulsion Laboratory Publication 97-017, Pasadena, CA, pp. 107-115.

Nikolaidis, R., 2002, Observation of Geodetic and Seismic Deformation with the Global Positioning System, Ph.D Thesis, University of California, San Diego, 249 pp.

Ponte, R.M., D.A. Salstein, and R.D. Rosen, 1991, Sea level response to pressure forcing in a barotropic numerical model, Journal of Physical Oceanography, 21, 1043-1957.

Spinler, J.C., R.A. Bennett, M.L. Anderson, S.F. McGill, S. Hreinsdóttir, and A. McCallister, 2010, Present-day strain accumulation and slip rates associated with southern San Andreas and eastern California shear zone faults from GPS, Journal of Geophysical Research, 115, B11407, doi:10.1029/2010JB007424.

Strang, G., and K. Borre, 1997, Linear Algebra, Geodesy, and GPS, Wellesley-Cambridge Press, Wellesley, MA, 624 pp.

Williams, S.D.P., 2003, The effect of coloured noise on the uncertainties of rates estimated from geodetic time series, Journal of Geodesy, 76, 483-494.

Williams, S.D.P., Y. Bock, P. Fang, P. Jamason, R.M. Nikolaidis, L. Prawirodirdjo, M. Miller, and D.J. Johnson, 2004, Error analysis of continuous GPS position time series, Journal of Geophysical Research, 109, B03412, doi:10.1029/2003JB002741.

Woodworth, P.L., and R. Player, 2003, The permanent service for mean sea level: An update to the 21st century, Journal of Coastal Research, 19, 287-295.

Wöppelmann, G., B.M. Miguez, M.N. Bouin, and Z. Altamimi, 2007, Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide, Global Planetary Change, 57, 396-406.

Wunsch, C., and D. Stammer, 1997, Atmospheric loading and the oceanic “inverted barometer” effect, Reviews of Geophysics, 35, 79-107.

Zerbini, S., 1997, The SELF II project, in Proceedings of the Workshop on Methods for Monitoring Sea Level: GPS and Tide Gauge Benchmark Monitoring and Altimeter Calibration, Jet Propulsion Laboratory Publication 97-017, Pasadena, CA, pp. 93-95.

Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×

This page intentionally left blank.

Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×
Page 153
Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×
Page 154
Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×
Page 155
Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×
Page 156
Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×
Page 157
Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×
Page 158
Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×
Page 159
Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×
Page 160
Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×
Page 161
Suggested Citation:"Appendix A: Vertical Land Motion and Sea-Level Data Along the West Coast of the United States." National Research Council. 2012. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future. Washington, DC: The National Academies Press. doi: 10.17226/13389.
×
Page 162
Next: Appendix B: Sea-Level Rise in the Northeast Pacific Ocean »
Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future Get This Book
×
Buy Paperback | $54.00 Buy Ebook | $43.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Tide gauges show that global sea level has risen about 7 inches during the 20th century, and recent satellite data show that the rate of sea-level rise is accelerating. As Earth warms, sea levels are rising mainly because ocean water expands as it warms; and water from melting glaciers and ice sheets is flowing into the ocean. Sea-level rise poses enormous risks to the valuable infrastructure, development, and wetlands that line much of the 1,600 mile shoreline of California, Oregon, and Washington. As those states seek to incorporate projections of sea-level rise into coastal planning, they asked the National Research Council to make independent projections of sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account regional factors that affect sea level.

Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future explains that sea level along the U.S. west coast is affected by a number of factors. These include: climate patterns such as the El Nino, effects from the melting of modern and ancient ice sheets, and geologic processes, such as plate tectonics. Regional projections for California, Oregon, and Washington show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections. However, projections are lower north of Cape Mendocino because the land is being pushed upward as the ocean plate moves under the continental plate along the Cascadia Subduction Zone. However, an earthquake magnitude 8 or larger, which occurs in the region every few hundred to 1,000 years, would cause the land to drop and sea level to suddenly rise.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!