National Academies Press: OpenBook
« Previous: Front Matter
Page 1
Suggested Citation:"Acknowledgements." National Academies of Sciences, Engineering, and Medicine. 2014. Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability. Washington, DC: The National Academies Press. doi: 10.17226/22407.
×
Page 1

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

ACKNOWLEDGEMENTS The research reported herein was performed by Modjeski and Masters, Inc. supported by the University of Nebraska at Lincoln, Dr. Dennis R. Mertz of the University of Delaware, and Rutgers University. Because of the close relationship between this project and the Strategic Highway Research Program 2 (SHRP 2) Project R19B, information and report sections were freely exchanged between the two projects. Dr. John M. Kulicki of Modjeski and Masters was the Principal Investigator of the SHRP2 R19B project. The following graduate students contributed to this project at different times: • Dan Su Rutgers University • Marek Kozikowski University of Nebraska • Przemyslaw Rakoczy University of Nebraska • Krzysztof Waszczuk University of Nebraska • Anna Maria Rakoczy University of Nebraska • Dustin M. Schopen University of Delaware • Benjamin Berwick University of Delaware xv

Next: Abstract »
Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability Get This Book
×
 Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

TRB’s National Cooperative Highway Research Program (NCHRP) Web-Only Document 201: Calibration of AASHTO LRFD Concrete Bridge Design Specifications for Serviceability explores calibrating the service limit states related to concrete bridges in the American Association of State Highway and Transportation Officials’ Load Resistance Factor Design Bridge Design Specifications (AASHTO LRFD).

A limit state is defined as the boundary between acceptable and unacceptable performance of the structure or its component.

According to the report, the limit states amenable to statistical calibration using the information currently available are cracking of reinforced concrete components, tensile stresses in concrete in prestressed concrete components, and fatigue of concrete and reinforcement

The results of the work indicated that the main problem in calibrating the service limit states is the lack of clear consequences to exceeding the limit state and the ability to define more than one limit state function to address the same phenomenon.

In the absence of reasons to increase or decrease the reliability inherent in the designs performed using the current specifications, the goal of the calibration was to help achieve uniform reliability with an average reliability similar to that inherent in current designs.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!