National Academies Press: OpenBook

Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light (2018)

Chapter: Appendix F: Bibliography of Sources

« Previous: Appendix E: Petawatt-Class Lasers Summary
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

F
Bibliography of Sources

2016 FY16 Radiation Balanced Lasers MURI Kick-OFF - Research Areas - AFOSR - APAN Community, accessed December 11, 2016, https://community.apan.org/wg/afosr/w/researchareas/18662.2016-fy16-radiation-balanced-lasers-muri-kick-off/.

Advanced Laser Light Source, Canada, “Specialized Labs and Equipment,” https://navigator.innovation.ca/en/navigator/advanced-laser-light-source-alls, accessed January 30, 2017.

All Partners Access Network (APAN), “MURI 15 Kickoff - Strong Field Laser Matter Interactions at Mid-Infrared Wavelengths - Research Areas - AFOSR - APAN Community”.

Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, et al., 2012, Demonstration of self-seeding in a hard x-ray free-electron laser, Nat. Photonics 6(10): 693-698.

Amatoa, A. Italiano, D. Margarone, B. Pagano, S. Baldari, and G. Korn, 2016, Study of the production yields of 18F, 11C, 13N and 15O positron emitters from plasma-laser proton sources at ELI-Beamlines for labeling of PET radiopharmaceuticals, Nucl. Instr. & Methods in Phys. Res. Sect. A 811: 1–5.

American Association for the Advancement of Science (AAAS), “Historical Trends in Federal R&D,” AAAS - The World’s Largest General Scientific Society, June 11, 2013, https://www.aaas.org/page/historical-trends-federal-rd.

Amplitude Systèmes, accessed December 11, 2016, http://www.amplitude-systemes.com/.

Amplitude Systèmes, “Ultrafast Lasers for Manufacturing Surgical Stents,” News | Amplitude Systèmes, accessed January 8, 2017, http://www.amplitude-systemes.com/headlines-ultrafast-lasers-for-stent-manufacturing.html.

AMPLITUDE TECHNOLOGIES,” accessed December 11, 2016, http://www.amplitude-technologies.com/.

Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M.M. Murnane, and H.C. Kapteyn, 2011, 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier, Opt. Lett. 36(15): 2755-2757.

Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, 2003, 0.85-PW, 33-fs Ti:sapphire laser, Opt. Lett. 28(17): 1594-1596.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

AP photo of Don Larsen delivering a pitch during his World Series perfect game October 8, 1956, from http://www.nydailynews.com/sports/baseball/yankees/larsen-plays-perfect-game-world-series-1956-article-1.2382988.

APAN, “MURI 15 Kickoff - Strong Field Laser Matter Interactions at Mid-Infrared Wavelengths - Research Areas - AFOSR - APAN Community,” accessed December 11, 2016, https://community.apan.org/wg/afosr/w/researchareas/15602.muri-15-kickoff-strong-field-laser-matter-interactions-at-mid-infrared-wavelengths/.

Arnett, 1988, On the early behavior of supernova 1987A, Astrophys. J. 331: 377–387.

Arnett, B. Fryxell, and E. Muller, 1989, Instabilities and nonradial motion in SN-1987A, Astrophys. J. Lett. 351: L63–L66.

Arvanitaki, Savas Dimopoulos, Sergei Dubovsky, Nemanja Kaloper, and John March-Russell, Phys. Rev. D 81, 123530 (2010).

Asano and P. Meszaros, 2016, Ultrahigh-energy cosmic ray production by turbulence in gamma-ray burst jets and cosmogenic neutrinos, Phys. Rev. D 94: 023005.

Atzeni, 1999, Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel, Physics of Plasmas 6: 3316-3326. .

Azechi and FIREX Project Team, 2016, The status of Fast Ignition Realization EXperiment (FIREX) and prospects for inertial fusion energy, J. Phys.: Conf. Ser. 717: 012006.

Babzien, I.B. Zvi, K. Kusche, I.V. Pavlishin, I.V. Pogorelsky, D.P. Siddons, V. Yakimenko, et al., 2006, Observation of the second harmonic in Thomson scattering from relativistic electrons, Phys. Rev. Lett. 96(5): 054802.

Babzien, M., et al., “Observation of Self-Amplified Spontaneous Emission in the near-Infrared and Visible Wavelengths,” Physical Review E 57, no. 5 (May 1, 1998): 6093–6100, doi:10.1103/ PhysRevE.57.6093.

Baer, 2010, Lasers in Science and Industry: A Report to OSTP on the Contribution of Lasers to American Jobs and the American Economy, http://www.laserfest.org/lasers/baer-schlachter.pdf.

Bahk, S.-W. et al., “Generation and Characterization of the Highest Laser Intensities (1022 W/cm2),” Optics Letters 29, no. 24 (December 15, 2004): 2837–39, doi:10.1364/OL.29.002837.

Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith, C.C. Chirila, M. Lein, J.W.G Tisch, and J.P. Marangos, 2006, Probing proton dynamics in molecules on an attosecond time scale, Science 312(5772): 424-427.

Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, et al., 2003, Attosecond control of electronic processes by intense light fields, Nature 421(6923): 611-615.

Bamber, C., S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, et al., 1999, Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses, Physical Review D 60(9): 092004.

Banerjee et al., “Compact Source of Narrowband and Tunable X-Rays for Radiography,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 350 (May 1, 2015): 106–11, doi:10.1016/j.nimb.2015.01.015.

Banerjee, P. D. Mason, K. Ertel, P. J. Phillips, M. De Vido, O. Chekhlov, M. Divoky, et al., 2016, 100 J-level nanosecond pulsed diode pumped solid state laser, Opt. Lett. 41(9): 2089-2092.

Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I.P. Christov, M.M. Murnane, and H.C. Kapteyn, 2000, Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays, Nature 406(6792): 164-166.

Bartels, S. Backus, G. Vdovin, I.P. Christov, M.M. Murnane, and H.C. Kapteyn, 2000, Sub-optical-cycle coherent control in nonlinear optics, Optics and Photonics News 11(12): 23.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Battistoni , M. Genco , M. Marsilio, C. Pancotti, S. Rossi, and S. Vignetti, 2016, Cost–benefit analysis of applied research infrastructure: Evidence from health care, Technological Forecasting & Social Change 112: 79–91.

Bayramian, Andy J., “High Energy, High Average Power, DPSSL System For Next Generation Petawatt Laser Systems,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), STu3M.2, doi:10.1364/CLEO_SI.2016.STu3M.2.

Becker, B.N. Chichkov, and B. Wellegehausen, 1999, Schemes for the generation of circularly polarized high-order harmonics by two-color mixing, Physical Review A 60(2): 1721-1722.

Bell and J.G. Kirk, 2008, Possibility of prolific pair production with high-power lasers, Phys Rev Letters 101(20): 200403.

Betti and O. A. Hurricane, “Inertial-Confinement Fusion with Lasers,” Nature Physics, May 3, 2016, 435–48, doi:10.1038/nphys3736.

Betti, A.A. Solodov, J.A. Delettrez, and C. Zhou, 2006, Gain curves for direct-drive fast ignition at densities around 300g∕cc, Physics of Plasmas 13(10): 100703.

Beyreuther, W. Enghardt, M. Kaluza, L. Karsch, L. Laschinsky, E. Lessmann, M. Nicolai, et al., 2010, Establishment of technical prerequisites for cell irradiation experiments with laser-accelerated electrons, Med. Phys. 37(4): 1392-1400.

Boca and V. Florescu, 2009, Nonlinear Compton scattering with a laser pulse, Phys. Rev. A 80(5): 053403.

Bohm-Vitense, 1989, Introduction to Stellar Astrophysics, Vol. 1: Basic Stellar Observations and Data, Cambridge University Press, New York.

Bolton, 2016, The integrated laser-driven ion accelerator system and the laser-driven ion beam radiotherapy challenge, Nucl. Instruments and Methods in Phys. Res. A 809: 149–155.

Bonifacio, C. Pellegrini, and L. M. Narducci, 1984, Collective instabilities and high-gain regime in a free electron laser, Opt. Commun. 50: 373.

Borghesi, S.Kara, R. Prasada, F.K. Kakolee, K. Quinn, H. Ahmed, G. Sarri, et al., 2011, Ion source development and radiobiology applications within the LIBRA project, Proc. of SPIE 8079: 80791E-1. .

Breit, “Collision of Two Light Quanta,” Physical Review 46, no. 12 (1934): 1087–91, doi:10.1103/ PhysRev.46.1087.

Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, et al., 2014, A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities, Light: Science & Applications 3: e211.

Britten, J. A., et al., “Large Aperture, High-Efficiency Multilayer Dielectric Reflection Gratings,” in Conference on Lasers and Electro-Optics (2002), Paper CPDB7 (Conference on Lasers and Electro-Optics, Optical Society of America, 2002), CPDB7, http://www.osapublishing.org/abstract.cfm?uri=CLEO-2002-CPDB7.

Brocklesby, W. S., et al., “ICAN as a New Laser Paradigm for High Energy, High Average Power Femtosecond Pulses,” The European Physical Journal Special Topics 223, no. 6 (May 1, 2014): 1189–95, doi:10.1140/epjst/e2014-02172-4.

Bromage, University of Rochester, “Ultra-High Intensity Laser Technology,” presentation to the committee on July 14, 2016.

Brown, J., J. Hayes, S. Rhodes, and C. Webb, 2015, “Federal Funding Sources,” https://www.ccas.net/files/2015%20Annual%20Meeting%20Washington%20DC/Presentations/Federal%20Funding%20Sources.pdf.

Browne, M.W., “Scientists Use Light to Create Particles,” accessed January 8, 2017, https://www.slac.stanford.edu/exp/e144/nytimes.html.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Bucksbaum, P., T. Ditmire, L. Di Mauro, J. Eberly, R. Freeman, M. Key, W. Leemans, D. Meyerhofer, G. Mourou, and M. Richardson, 2002, The Science and Applications of Ultrafast Lasers: Opportunities in Science and Technology Using the Brightest Light Known to Man, presented at the SAUUL Workshop, Washington, D.C., June 17-19.

Bula, C., K.T. McDonald, E.J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A.C. Melissinos, et al., 1996, Observation of nonlinear effects in Compton Scattering, Phys. Rev. Lett. 76(17): 3116–3119.

Bulanov and V.S. Khoroshkov, 2002, Feasibility of using laser ion accelerators in proton therapy, Plasma Physics Reports 28(5): 453-456.

Bulanov, N.M. Naumova, and F. Pegoraro, 1994, Interaction of an ultrashort, relativistically intense laser-pulse with an overdense plasma, Phys. Plasmas 1: 745.

Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, et al., 1997, Positron production in multiphoton light-by-light scattering, Phys. Rev. Lett. 79(9): 1626.

Campbell, 2015, “Ultrahigh Brightness Laser Development at the Laboratory for Laser Energetics,” presentation at George Washington University, Washington, D.C., December 14. https://physics.columbian.gwu.edu/sites/physics.columbian.gwu.edu/files/downloads/Campbell_LDRS2015.pdf.

Campbell, J. S. Hayden, and A. J. Marker, 2011, High-power solid-state lasers from a laser glass perspective, International Journal of Applied Glass Science 2(1): 3-29.

Capdessus, E. d’Humières, and V.T. Tikhonchuk, 2013, Investigation of collective electron effects in radiation production, Phys. Rev. Letters 110(21): 215003.

Celliers, G.W. Collins, L.B. Da Silva, D.M. Gold, R. Cauble, R.J. Wallace, M.E. Foord, and B.A. Hammel, 2000, Shock-induced transformation of liquid deuterium into a metallic fluid, Phys Rev Lett. 84: 5564-5567.

Center for Advanced Laser Technologies, “CETAL-PW Laboratory,” www.cetal.inflpr.ro/cetal-pw, accessed January 30, 2017.

CERN, “The Higgs Boson,” https://home.cern/topics/higgs-boson, accessed February 9, 2017.

CERN, “United Forces,” http://home.cern/about/physics/unified-forces, accessed February 9, 2017.

Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, 1998, Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible, Optics Letters 23(16): 1283-1285.

Chang, A. Rundquist, H. Wang, I. Christov, H.C. Kapteyn, and M.M. Murnane, 1998, Temporal phase control of soft-x-ray harmonic emission, Physical Review A 58(1): R30-R33.

Chekhlov et al, “35 J broadband femtosecond optical parametric chirped pulse amplification system,” Optics Letters, 31, 24, 2665-3667 (2006).

Chen et al., “Relativistic Positron Creation Using Ultraintense Short Pulse Lasers,” Physical Review Letters 102, no. 10 (March 11, 2009): 105001, doi:10.1103/PhysRevLett.102.105001.

Chen, “Accelerating Plasma Mirrors to Investigate the Black Hole Information Loss Paradox,” Physical Review Letters 118, no. 4 (2017), doi:10.1103/PhysRevLett.118.045001.

Chen, V.L. Anderson, and O. Kahan, 1990, Measurements of heating and energy storage in diode-pumped Nd:YAG, IEEE J. Quantum Electron. 26(1): 6-8.

Christov, M.M. Murnane, and H.C. Kapteyn, 1997, High-harmonic generation of attosecond pulses in the ‘’single- cycle’’ regime, Physical Review Letters 78(7): 1251-1254.

Christov, M.M. Murnane, and H.C. Kapteyn, 1998, Generation and propagation of attosecond x-ray pulses in gaseous media, Physical Review A 57(4): R2285-R2288.

Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, et al., 2013, High-contrast 2.0 Petawatt Ti:sapphire laser, Opt. Exp. 21(24): 29231-29239.

Chu, Z. Gan, X. Liang, L. Yu, X. Lu, C. Wang, X. Wang, et al, 2015, High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses, Optics Letters 40(21): 5011-5014.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Chvykov, and K. Krushelnick, 2012, Large aperture multi-pass amplifiers for high peak power lasers, Opt. Commun. 285(8):21342136.

Chvykov, V. Yanovsky, S-W. Bahk, G. Kalintchenko, and G. Mourou, 2003, paper CWA34 presented at the Conference on Lasers and Electro-Optics, Baltimore, Md., June 1–6, OSA Technical Digest.

Clark-MXR Innovative Ultrafast Laser Solutions,” accessed December 11, 2016, http://www.cmxr.com/.

Class 5 Photonics,” accessed December 11, 2016, http://www.class5photonics.com/.

Coherent, “Coherent Corporate Website,” accessed December 11, 2016, https://www.coherent.com.

Coherent-Rofin, “ROFIN.COM - Lasers for Industry - Fiber Lasers, Ultrashort Pulse Lasers, Solid-State Lasers, CO2-Lasers Etc.,” accessed December 11, 2016, https://www.rofin.com/.

Cole, J.C. Wood, N.C. Lopes, K. Pode1, R.L. Abe, S. Alatabi, J.S.J. Bryant, et al., 2015, Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone, Scientific Reports 5: 13244.

Collins, L.B. Da Silva, P. Celliers, and R. Cauble, 1998, Measurements of the equation of state of deuterium at the fluid insulator-metal transition, Science 281(5380): 1178-1181.

Conover, 2016, The pressure is on to make metallic hydrogen, Science News 190(4): 18.

Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, 2013, Femtosecond x rays from laser-plasma accelerators, Rev. Mod. Phys. 85(1).

Corkum, 1993, Plasma perspective on strong field multiphoton ionization, Physical Review Letters 71: 1994-1997.

Corkum, N.H. Burnett, and M.Y. Ivanov, 1994, Subfemtosecond pulses, Optics Letters 19(22): 1870.

Couairon and A. Mysyrowicz, 2007, Femtosecond filamentation in transparent media, Phys. Rep. 441(2-4): 47-190. .

Crump, G. Erbert, H. Wenzel, C. Frevert, C. M. Schultz, K-H. Hasler, R. Staske, B. Sumpf, A. Maaßdorf, Frank Bugge, Steffen Knigge, and Gunther Trankle, “Efficient High-Power Laser Diodes,” IEEE. J. Sel. Topics Quantum Electron. 19, 1501211 (2013).

Crump, M. Grimshaw, J. Wang, W. Dong, S. Zhang, S. Das, J. Farmer, M. DeVito, L. S. Meng, and J. K. Brasseur, “85% Power Conversion Efficiency 975-nm Broad Area Diode Lasers at - 50°C, 76 % at 10°C,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper JWB24.

Daniault, S. Bellanger, J. Le Dortz, J. Bourderionnet, É. Lallier, C. Larat, M. Antier-Murge, J.-C. Chanteloup, A. Brignon, C. Simon-Boisson, and G. Mourou, 2015, XCAN – A coherent amplification network of femtosecond fiber chirped-pulse amplifiers, Eur. Phys. J. Special Topics 224(13): 2609-2613.

Danson, P.A. Brummitt, R.J. Clarke, J.L. Collier, B. Fell, A.J. Frackiewicz, S. Hancock, S. Hawkes, C. Hernandez-Gomez, and P. Holligan, 2004, Vulcan Petawatt—an ultra-high-intensity interaction facility, Nuclear Fusion 44(12): 239–246.

Danson, P.A. Brummitt, R.J. Clarke, J.L. Collier, B. Fell, A.J. Frackiewicz, S. Hawkes, et al., 2005, Vulcan petawatt—design, operation and interactions at 5 × 1020 Wcm−2, Laser Part. Beams 23: 87–93.

Design and Performance of a Diode-Pumped Nd:Silica-Phosphate Glass Zig-Zag Slab Laser Amplifier for Inertial Fusion Energy,” Japanese Journal of Applied Physics 40, no. 11R (November 2001): 6415, doi:10.1143/JJAP.40.6415.

Di Piazza, C. Muller, K. Z. Hatsagortsyan, and C. H. Keitel, 2012, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys., 84, 1177-1228.

Di Piazza, K.Z. Hatsagortsyan, and C.H. Keitel, 2009, Strong signatures of radiation reaction below the radiation-dominated regime, Phys. Rev. Lett. 102(25): 254802.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, et al., 1995, Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation, Phys. Rev. A 51(4): 3164-3168.

DiMauro et al, “SAUUL Presentation,” 2002, http://www.lle.rochester.edu/pub/viewgraph/PDF/PR/PRMHFRSAUUL.pdf.

Ding, Z. Huang, D. Ratner, P. Bucksbaum, and H. Merdji, 2009, Generation of attosecond x-ray pulses with a multicycle two-color enhanced self-amplified spontaneous emission scheme, Physical Review Special Topics - Accelerators and Beams 12(6): 060703.

Ditmire, J. Zweiback, V.P. Yanovsky, T.E. Cowan, G. Hays, and K.B. Wharton, 1999, Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters, Nature 398: 489-492.

DOE, 2013, “Lasers for Accelerators,” http://science.energy.gov/~/media/hep/pdf/accelerator-rd-stewardship/Lasers_for_Accelerators_Report_Final.pdf.

Dromey, M. Zepf, A. Gopal, K. Krushelnick, K. Lancaster, M.S. Wei, R. Clarke, et al., 2006, High harmonic generation in the relativistic limit, Nature Phys. 2: 456-459.

Druon, et al., 2015, Design and current progress of the Apollon 10 PW project, High Power Laser Science and Engineering 3:e2.

Durfee and H.M. Milchberg, 1993, Light pipe for high intensity laser pulses, Phys. Rev. Lett. 71: 2409.

École Polytechnique, “Birth of Apollon, the Most Powerful Laser Worldwide,” last update September 30, 2015, https://www.polytechnique.edu/en/content/birth-apollon-most-powerful-laser-worldwide?language=en.

Eich, A. Stange, A.V. Carr, J. Urbancic, T. Popmintchev, M. Wiesenmayer, K. Jansen, et al., 2014, Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers, Journal of Electron Spectroscopy and Related Phenomena 195: 231-236. .

Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, 2011, Fiber chirped-pulse amplification system emitting 3.8 GW peak power, Opt. Express 19(1): 255-260.

Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, et al., 2010, Femtosecond fiber CPA system emitting 830 W average output power, Opt. Lett. 35(2): 94-96.

Einstein, 1917, Strahlungs-emission und -absorption nach der Quantentheorie, Physika Zeitschrift 18(121).

ELI Delivery Consortium | Home, accessed December 9, 2016, https://eli-laser.eu/.

Elias, M. Fairbank, J. M. J. Madey, H. A. Schwettman, and T. I. Smith, 1976, Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field, Phys. Rev. Lett. 36: 717.

Emma, K. Fang, J. Wu, and C. Pellegrini, 2016, High efficiency, multiterawatt x-ray free electron lasers, Phys. Rev. Accel. Beams 19(2): 20705.

Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, et al., 2010, First lasing and operation of an angstrom-wavelength free-electron laser, Nature Photonics 4(9): 641–647.

England, R.J. Noble, K. Bane, D.H. Dowell, C-K Ng, J.E. Spencer, S. Tantawi, et al., 2014, Dielectric laser accelerators, Rev. Mod. Phys. 86(4): 1337.

Erbert, G. M. Heestand, et al., 2007, National Ignition Facility laser performance status, Appl. Opt. 46(16): 3276-3303.

Erlandson, 2014, “High Energy DPSSL Technology,” presented at the ELI-HiLASE Summer School, Aug. 24-29, Prague, Czech Republic, http://www.eli-beams.eu/wp-content/uploads/2013/11/Erlandson_high_energy_class_dpssl_technology.pdf.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Erlandson, S. M. Aceves, A. J. Bayramian, A. L. Bullington, R. J. Beach, C. D. Boley, J. A. Caird, et al., 2011, Comparison of Nd:phosphate glass, Yb:YAG and Yb:S-FAP laser beamlines for laser inertial fusion energy (LIFE), Opt. Mat. Exp. 1(7): 1341-1352.

Esarey, C.B. Schroeder, and W.P. Leemans, 2009, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81: 1229.

EU Community Research and Development Information Service, “ELITRANS-Facilitating the transformation of ELI from ERDF funded, distributed infrastructures towards a unified ELI-ERIC,” last update November 5, 2015, http://cordis.europa.eu/project/rcn/199115_en.html.

European Semiconductor Industry Association, Japan Electronics and Information Technology Industries Association, Korean Semiconductor Industry Association, Taiwan Semiconductor Industry Association, and United States Semiconductor Industry Association, 2013, International Technology Roadmap for Semiconductors, http://www.itrs.net/Links/2013ITRS/Home2013.htm, accessed March 14, 1017.

Extreme Light Infrastructure (ELI), “What is ELI?”, https://eli-laser.eu/, accessed January 30, 2017.

Extreme Light Infrastructure, “ELI-ALPS Research Facilities,” http://www.eli-alps.hu/?q=en/02_ Parameters, accessed January 27, 2017.

Extreme Light Infrastructure-Nuclear-Physics, http://www.eli-np.ro/, accessed February 9, 2017.

Falcone, R., 2008, “FESAC HEDS,” n.d., http://science.energy.gov/~/media/fes/fesac/pdf/2010/Falcone_fesac.pdf.

Falk, 2015, “Warm Dense Matter,” presented at ELI Summer School, Sept. 21-25, Bucharest, Romania.

Falk, E.J. Gamboa, G. Kagan, D.S. Montgomery, B. Srinivasan, P. Tzeferacos, and J. F. Benage, 2014, Equation of state measurements of warm dense carbon using laser-driven shock and release technique, Phys. Rev. Lett. 112(15): 155003.

Fan, P. Grychtol, R. Knut, C. Hernandez-Garcia, D.D. Hickstein, D. Zusin, C. Gentry, et al., 2015, Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism, Proceedings of the National Academy of Sciences of the United States of America 112(46): 14206-14211 (2015).

FASTLITE - Ultrafast - Shaping - Measurement - Control,” accessed December 11, 2016, http://www.fastlite.com/en/.

Fattahi, H. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Teisset, M. Schultze, et al., 2014, Third-generation femtosecond technology, Optica 1(1): 45-63.

Fäustlin, Th. Bornath, T. Döppner, S. Düsterer, E. Förster, C. Fortmann, S.H. Glenzer, et al., 2010, Observation of ultrafast nonequilibrium collective dynamics in warm dense hydrogen, Phys. Rev. Lett. 104: 125002.

Femto-Solid Lab Part of a $12.5 Million AFOSR MURI Program | High Energy Density Physics Scarlet Laser Facility,” accessed December 11, 2016, https://hedp.osu.edu/news/femto-solid-lab-part-12.5-million-afosr-muri-program.

Feng, J. Chen, and Z. Zhao, 2012, Generating stable attosecond x-ray pulse trains with a mode-locked seeded free-electron laser, Phys. Rev. ST Accel. Beams 15: 080703.

Feng, S. Gilbertson, H. Mashiko, H. Wang, S.D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, 2009, Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers, Physical Review Letters 103(18): 183901. .

Ferray, A. Lhuillier, X.F. Li, L.A. Lompre, G. Mainfray, and C. Manus, 1988, Multiple-harmonic conversion of 1064-Nm radiation in rare-gases, Journal of Physics B-Atomic Molecular and Optical Physics 21(3): L31-L35.

File:Operation Castle - Romeo 001.Jpg,” Wikipedia, accessed July 13, 2017, https://en.wikipedia.org/wiki/File:Operation_Castle_-_Romeo_001.jpg.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Fiscal Year 2016 Stockpile Stewardship and Management Plan,” accessed January 8, 2017, https://nnsa.energy.gov/sites/default/files/FY16SSMP_FINAL%203_16_2015_reducedsize.pdf.

Fleischer, O. Kfir, T. Diskin, P. Sidorenko, and O. Cohen, 2014, Spin angular momentum and tunable polarization in high-harmonic generation, Nature Photonics 8(7): 543-549.

Flores, I. Dajani, R. Holten, T. Ehrenreich, and B. Anderson, 2016, Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers, Opt. Eng. 55(9): 096101.

Fourmaux, S. Corde, K. Ta Phuoc, S. Buffechoux, S. Gnedyuk, A. Rousse, A. Krol, and J.C. Kieffer, 2011, Initial steps towards imaging tumors during their irradiation by protons with the 200TW laser at the Advanced Laser Light Source facility (ALLS), Proc. of SPIE 8079: 80791I-1.

Frenje, P.E. Grabowski, C.K. Li, F.H. Séguin, A.B. Zylstra, M. Gatu Johnson, R.D. Petrasso, V. Yu Glebov, and T.C. Sangster, 2015, Measurements of ion stopping around the Bragg peak in high-energy-density plasmas, Phys. Rev. Lett. 115: 205001.

Fulkerson, S. Telford, R. Deri, A. Bayramian, R. Lanning, E. Koh, K. Charron, and C. Haefner, 2015, Pulsed power system for the HAPLS Diode Pumped Laser System, in Proceedings of the IEEE Pulsed Power Conference (PPC), Austin, May 31-June 1.

Fusion Power, “Fusion Power Associates,” accessed December 11, 2016, http://fusionpower.org/.

Gagnon, P. Ranitovic, A. Paul, C.L. Cocke, M.M. Murnane, H.C. Kapteyn, and A.S. Sandhu, 2007, Soft x-ray driven femtosecond molecular dynamics, Science 317(5843): 1374-1378.

Gahn, G.D. Tsakiris, G. Pretzler, K.J. Witte, C. Delfin, C.G. Wahlström, and D. Habs, 2000, Generating positrons with femtosecond laser pulses, App. Phys. Lett. 77(17): 2662-2664.

Gapontsev, V. Fomin, and A. Yusim, 2009, Recent progress in scaling high-power fiber lasers at IPG photonics, in 22nd Annual Solid State and Diode Laser Technology Review, Newton, Mass, July. .

Gaul, M. Martinez, J. Blakeney, A. Jochmann, M. Ringuette, D. Hammond, T. Borger, et al., 2010, Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier, Appl. Opt. 49(9): 1676-1681.

Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, and D.A. Reis, 2011, Observation of high-order harmonic generation in a bulk crystal, Nature Physics 7(2): 138-141.

Giambruno, C. Radier, G. Rey, and G. Chériaux, 2011, Design of a 10 PW (150 J/15 fs) peak power laser system with Ti:sapphire medium through spectral control, Applied Optics 50(17): 2617-2621.

Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, 1994, Scalable concept for diode-pumped high-power solid-state lasers, Appl. Phys. B 58(5): 363-372.

Gilbert et al., “Non-Invasive Material Discrimination Using Spectral x-Ray Radiography,” Journal of Applied Physics 115, no. 15 (April 15, 2014): 154901, doi:10.1063/1.4870043.

Glenzer and A.J. Mackinnon, 2015, New Science Opportunities enabled by Petawatt-class Lasers at LCLS-II, SLAC National Accelerator Laboratory, Menlo Park, Calif.

Glenzer and R. Redmer, 2009, X-ray Thomson scattering in high energy density plasmas, Rev. Mod. Phys. 81: 1625.

Glenzer et al., “Matter under Extreme Conditions Experiments at the Linac Coherent Light Source,” Journal of Physics B: Atomic, Molecular and Optical Physics 49, no. 9 (2016): 092001, doi:10.1088/0953-4075/49/9/092001.

Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J.J. Santos, E. Lefebvre, et al., 2005, High-resolution x-ray radiography produced by a laser-plasma driven electron source, PRL 94(2): 025003.

Goncz and P. B. Newell, “Spectra of Pulsed and Continuous Xenon Discharges,” J. Opt. Soc. Am. 56, 87 (1966).

Groenendijk, “Fabrication of Super Hydrophobic Surfaces by Fs Laser Pulses,” Laser Technik Journal 5, no. 3 (May 1, 2008): 44–47, doi:10.1002/latj.200890025.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Guichard, M. Hanna, L. Lombard, Y. Zaouter, C. Hönninger, F. Morin, F. Druon, E. Mottay, and P. Georges, 2013, Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers, Opt. Lett. 38(24): 5430-5433.

Habs, P.G. Thirolf, C. Lang, M. Jentschel, U. Köster, F. Negoita, and V. Zamfir, 2011, Medical applications studies at ELI-NP. Proc. SPIE 8079: 1H .

Haight and P.F. Seidler, 1994, High resolution atomic core level spectroscopy with laser harmonics, Applied Physics Letters 65: 517.

Hammersley, Graham, Lloyd A. Hackel, and Fritz Harris, “Surface Prestressing to Improve Fatigue Strength of Components by Laser Shot Peening,” Optics and Lasers in Engineering, Laser Material Processing, 34, no. 4 (October 1, 2000): 327–37, doi:10.1016/S0143-8166(00)00083-X.

Hanna, M. Guichard, Y. Zaouter, D. N. Papadopoulos, F. Druon, and P. Georges, 2016, Coherent combination of ultrafast fiber amplifiers, J. Phys. B: At. Mol. Opt. Phys. 49(6): 062004.

Hänsch and B. Couillaud, 1980, Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavit, Opt.Commun. 35(3): 441-444.

Hanton, D. Doria, K.F. Kakolee, S. Kar, S.K. Litt, F. Fiorini, H. Ahmed, et al., 2013, Radiobiology at ultra-high dose rates employing laser-driven ions, Proc. of SPIE 8779: UNSP 87791E.

Hartin, “The Stimulated Breit-Wheeler Process as a Source of Background E+e− Pairs at the International Linear Collider,” Pramana 69, no. 6 (December 1, 2007): 1159–64, doi:10.1007/s12043007-0247-6.

Hartmann and J.M. Glownia, 2016, X-ray photonics: Attosecond coherent control at FELs, Nature Photonics 10(3): 148–50.

Hartmann, W. Helml, A. Galler, M. Bionta, J. Grünert, S. Molodtsov, K. Ferguson, et al., 2014, Subfemtosecond precision measurement of relative x-ray arrival time for free-electron lasers, Nature Photonics 8: 706-709.

Haynam, et al., 2007, National Ignition Facility laser performance status.

He and ICF teams in China, 2016, The updated advancements of inertial confinement fusion program in China, Journal of Physics: Conference Series 688: 012029.

Hecht, Jeff, “Photonic Frontiers: The Extreme Light Infrastructure: The ELI Aims to Break down the Vacuum,” Laser Focus World 47, no. 1 (2011), http://www.laserfocusworld.com/articles/print/volume-47/issue-1/features/photonic-frontiers-the-extreme-light-infrastructure-the-eli-aims-to-break-down-the-vacuum.html.

Heinzl, B. Liesfeld, K.-U. Amthor, H. Schwoerer, R. Sauerbrey, and A. Wipf, 2006, On the observation of vacuum birefringence, Opt.Commun. 267(2): 318-321.

Helmholtz Association, 2011, Helmholtz-Roadmap for Research Infrastructures, https://www.helmholtz.de/fileadmin/user_upload/publikationen/pdf/11_Helmholtz_Roadmap_EN_WEB.pdf.

Helmholtz-Zentrum Dresden-Rossendorf, “PEnELOPE,” February 6, 2016, https://www.hzdr.de/db/Cms?pNid=2098.

Helmholtz-Zentrum Dresden-Rossendorf, “Petawatt Laser DRACO,” hzdr.de/db/Cms?pNid=2096, last update February 2, 2016.

Helml, A.R. Maier, W. Schweinberger, I. Grguraš, P. Radcliffe, G. Doumy, C. Roedig, et al., 2014, Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain, Nat Photon 8: 950–957.

Hemsing, G. Stupakov, D. Xiang, and A. Zholents, 2014, Beam by design: Laser manipulation of electrons in modern accelerators, Reviews of Modern Physics 86(3): 897–941.

Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, 2001, Attosecond metrology, Nature 414: 509-513.

Hernandez-Gomez, S.P. Blake, O. Chekhlov, R.J. Clarke, A.M. Dunne, M. Galimberti, S. Hancock, et al., 2010, The Vulcan 10PW project, Journal of Physics: Conference Series 244(3): 032006.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Hicks, T.R. Boehly, P.M. Celliers, D.K. Bradley, J.H. Eggert, R.S. McWilliams, R. Jeanloz, and G.W. Collins, 2008, High precision measurements of the diamond Hugoniot in and above the melt region, Phys. Rev. B 78: 174102.

Hickstein, F.J. Dollar, P. Grychtol, J.L. Ellis, R. Knut, C. Hernandez-Garcia, D. Zusin, et al., 2015, Non-collinear generation of angularly isolated circularly polarized high harmonics, Nature Photonics 9(11): 743-750.

Holzrichter, Laser Fusion Program, Semiannual Report, July-December 1973, (UCRL-50021-73-2), Lawrence Livermore National Laboratory, University of California, Livermore, CA, p.44.

Hoogeboom-Pot, J. Hernandez-Charpak, T. Frazer, X. Gu, E. Turgut, E. Anderson, W. Chao, et al., 2015, Mechanical and thermal properties of nanomaterials at sub-50nm dimensions characterized using coherent EUV beams, Proc. SPIE 942: Metrology, Inspection, and Process Control for Microlithography XXIX (J.P. Cain and M.I. Sanchez, eds.), San Jose, Calif., February 22.

Hooker, J.L. Collier, O. Chekhlov, R. Clarke, E. Divall, K. Ertel, B. Fell, et al., 2006, The Astra Gemini Project —A dual-beam petawatt Ti:Sapphire laser system, J. Phys. IV 133: 673-677.

Hopps, K. Oades, J. Andrew, C. Brown, G. Cooper, C. Danson, S. Daykin, S. Duffield, R. Edwards, and D. Egan, 2015, Comprehensive description of the Orion laser facility, Plasma Physics and Controlled Fusion 57(6): 064002.

Horizon 2020 - European Commission,” Horizon 2020, 202, accessed December 9, 2016, https://ec.europa.eu/programmes/horizon2020/.

Hornung, H. Liebetrau, A. Seidel, S. Keppler, A. Kessler, J. Körner, M. Hellwing, et al., 2014, The all-diode-pumped laser system POLARIS—an experimentalist’s tool generating ultra-high contrast pulses with high energy, High Power Laser Science and Engineering 2: e20.

Hornung, H. Liebetrau, S. Keppler, A. Kessler, M. Hellwing, F. Schorcht, G.A. Becker, et al., 2016, 54 J pulses with 18 nm bandwidth from a diode-pumped chirped-pulse amplification laser system, Optics Letters 41(22): 5413-5416.

Hoshino, 2015, Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk, Phys. Rev. Lett. 114: 061101.

Hu, Huayu. “Complete QED Theory of Multiphoton Trident Pair Production in Strong Laser Fields.” Physical Review Letters 105, no. 8 (2010). doi:10.1103/PhysRevLett.105.080401.

Huang, G. Cirmi, J. Moses, K-H. Hong, S. Bhardwaj, J. R. Birge, L-J. Chen, I. V. Kabakova, E. Li, B. J. Eggleton, G. Cerullo and F. X. Kartner, 2012, Optical waveform synthesizer and its application to high-harmonic generation, J. Phys. B: At. Mol. Opt. Phys. 45: 074009.

Hubbard, 1981, Interiors of the giant planets, Science 214(4517): 145-149.

Hung, Er-Cheng Tsai, and Xiquan Zhu. “Delbrück Scattering.” Physical Review D 26, no. 4 (August 15, 1982): 908–21. doi:10.1103/PhysRevD.26.908.

Hunt, C., “World Bank Kicks Coal, but Will the Rest of the World Follow?” The Conversation, July 28, 2013,http://theconversation.com/world-bank-kicks-coal-but-will-the-rest-of-the-world-follow-16392. .

Hurricane et al., “Fuel Gain Exceeding Unity in an Inertially Confined Fusion Implosion,” Nature 506, no. 7488 (February 20, 2014): 343–48, doi:10.1038/nature13008.

IMRA - Femtosecond Fiber Lasers,” accessed December 11, 2016, http://www.imra.com/.

Inadaa, T. Yamajia, S. Adachia, T. Nambab, S. Asaia, T. Kobayashib, K. Tamasaku, et al., 2014, Search for photon–photon elastic scattering in the X-ray region, Physics Letters B 732: 356-359.

Institute of Applied Physics of the Russian Academy of Sciences, “Exawatt Center for Extreme Light Studies (XCELS): Project Summary,” http://www.xcels.iapras.ru/img/site-XCELS.pdf.

Institute of Applied Physics of the Russian Academy of Sciences, “On the way to multipetawatt power. PEARL-10,” http://www.iapras.ru/english/science/las_phys/gen_lasf2.html, accessed January 30, 2017.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

International Committee on Ultrahigh Intensity Lasers (ICUIL), http://www.icuil.org/, accessed December 10, 2016.

IPG Photonics Corporation,” accessed December 11, 2016, http://www.ipgphotonics.com/.

Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J.C. Kieffer, P.B. Corkum, and D.M. Ville-neuve, 2004, Tomographic imaging of molecular orbitals, Nature 432(7019): 867-871.

Ivanov, G.L. Kotkin, and V.G. Serbo, 2005, Complete description of polarization effects in e + e- pair productionby a photon in the field of a strong laser wave, Eur. Phys. J. C 40: 27.

Jackson, 2001, Classical Electrodynamics, 3rd ed., Wiley, New York.

Jacobs, Ralph R., William F. Krupke, and Marvin J. Weber, “Measurement of Excited‐state‐absorption Loss for Ce3+ in Y3Al5O12 and Implications for Tunable 5d→4f Rare‐earth Lasers,” Applied Physics Letters 33, no. 5 (September 1, 1978): 410–12, doi:10.1063/1.90395.

Jeong and J. Lee, 2014, Femtosecond petawatt laser, Annalen der Physik 526(3-4): 157-172.

Jhajj, E.W. Rosenthal, R. Birnbaum, J.K. Wahlstrand, and H.M. Milchberg, 2014, Demonstration of Long-Lived High-Power Optical Waveguides in Air, Phys. Rev. X 4(1): 011027.

Jiang et al., “Femtosecond Laser High-Efficiency Drilling of High-Aspect-Ratio Microholes Based on Free-Electron-Density Adjustments,” Applied Optics 53, no. 31 (November 1, 2014): 7290–95, doi:10.1364/AO.53.007290.

Johnson, and H. J. Guggenheim, 1967, Phonon terminated coherent emission from V2+ ions in MgF2, J. App. Phys. 38(12): 4837-4839.

Johnson, R.E. Dietz, and H.J. Guggenheim, 1963, Optical maser oscillation from Ni2+ in MgF2 involving simultaneous emission of phonons, Phys. Rev. Lett. 11(7): 318-320.

Jullien, O. Albert, F. Burgy, G. Hamoniaux, J-P. Rousseau, J-P. Chambaret, F. Augé-Rochereau, et al., 2005, 10−10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation, Opt. Lett. 30(8): 920-922.

Kamlage et al., “Deep Drilling of Metals by Femtosecond Laser Pulses,” Applied Physics A 77, no. 2 (July 1, 2003): 307–10, doi:10.1007/s00339-003-2120-x.

Karsch, 2011, “CALA and Garching Plans,” presented at the European Network for Novel Accelerators Workshop, Geneva, May 3-6.

Kawanaka, K. Tsubakimoto, H. Yoshida, K. Fujioka, Y. Fujimoto, S. Tokita, T. Jitsuno, N. Miyanaga, and Gekko-EXA Design Team, 2016, Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification, Journal of Physics: Conference Series 688:012044.

Khrennikov, J. Wenz, A. Buck, J. Xu, M. Heigoldt, L. Veisz, and S. Karsch, 2015, Tunable all-optical quasimonochromatic Thomson x-ray source in the nonlinear regime, PRL 114(19): 195003.

Kienel et al., “12 MJ KW-Class Ultrafast Fiber Laser System Using Multidimensional Coherent Pulse Addition,” Optics Letters 41, no. 14 (July 15, 2016): 3343–46, doi:10.1364/OL.41.003343.

Kienel, A. Klenke, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann, 2014, Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification, Opt. Lett. 39: 1049.

Kimura and A. Bonasera, 2011, Deuteron-induced reactions generated by intense lasers for PET isotope production, Nuclear Instruments and Methods in Physics Research A637: 164–170.

Kiriyama, M. Mori, A. Pirozhkov, K. Ogura, M. Nishiuchi, M. Kando, H. Sakaki, et al., 2015, Recent advances on the J-KAREN laser upgrade, in CLEO: 2015, San Jose, Calif., May 10-15, Optical Society of America.

Kitagawa, Y., et al., “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE Journal of Quantum Electronics 40, no. 3 (March 2004): 281–93, doi:10.1109/JQE.2003.823043.

Klenke, S. Hädrich, T. Eidam, J. Rothhardt, M. Kienel, S. Demmler, T. Gottschall, J. Limpert, and A. Tünnermann, 2014, 22 GW peak-power fiber chirped-pulse-amplification system, Opt. Lett. 39(24): 6875-6878.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Klimentov et al., “The Role of Plasma in Ablation of Materials by Ultrashort Laser Pulses,” Quantum Electronics 31, no. 5 (2001): 378, doi:10.1070/QE2001v031n05ABEH001958.

KMLabs, accessed December 11, 2016, http://www.kmlabs.com/.

Knapp, 2012, “How Much Does It Cost To Find A Higgs Boson?” Forbes Magazine, July 5.

Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi, H. Fujita, et al., 2002, Nuclear fusion: Fast heating scalable to laser fusion ignition, Nature 418: 933-934.

Kodama, P.A. Norreys, K. Mima, A.E. Dangor, R.G. Evans, H. Fujita, Y. Kitagawa, et al., 2001, Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition, Nature 412: 798-802.

Koga, James K., and Takehito Hayakawa. “Possible Precise Measurement of Delbrück Scattering Using Polarized Photon Beams.” Physical Review Letters 118, no. 20 (May 17, 2017): 204801. doi:10.1103/PhysRevLett.118.204801.

Kong, L. M. Zhao, S. Lefrancois, D. G. Ouzounov, C. X. Yang, and F. W. Wise, 2012, Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier, Opt. Lett. 37: 253.

Korte, S. Nolte, B.N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, 1999, Far-field and near-field material processing with femtosecond laser pulses, Applied Physics A 69(1): S7–S11.

Kraft, C. Richter, K. Zeil, M. Baumann, E. Beyreuther, S. Bock, M. Bussmann, et al., 2010, Dose-dependent biological damage of tumour cells by laser-accelerated proton beams, New J. Phys. 12: 085003.

Krause, K.J. Schafer, and K.C. Kulander, 1992, High-order harmonic-generation from atoms and ions in the high-intensity regime, Physical Review Letters 68(24): 3535-3538.

Krupke, 1983, Insulator materials in high power lasers for inertial fusion: Present and future, MRS Proceedings 24: 401.

Krupke, 1999, Materials for lasers and nonlinear optics, in Advances in Lasers and Applications (D.M. Finlayson and B. Sinclair, eds.), CRC Press.

Krupke, W. F., “High-Average-Power, Diode-Pumped Solid State Lasers for Energy and Industrial Applications,” in Presented at the 6th International Symposium on Advanced Nuclear Energy Research, Mito, Japan, 23-25 Mar. 1994, 1994.

Krylov, A. Kalintsev, A. Rebane, D. Erni, and U. P. Wild, 1995, Noncollinear parametric generation in LiIO3 and b-barium borate by frequency-doubled, femtosecond Ti:sapphire laser pulses, Opt. Lett 20(2): 151-153.

Kuehl, 2014, “GSI PHELIX (Petawatt High Energy Laser for heavy-Ion eXperiments),” presented at IZEST–ELI-NP “Extreme Light’s New Horizons” Conference, Paris, Sept. 17-19.

Kuznetsova, D. Habs, and J. Rafelski, 2008, Pion and muon production in e-, e+, γ plasma, Physical Review D - Particles, Fields, Gravitation and Cosmology 78(1): 014027.

Laboratory for Laser Energetics, “About OMEGA EP,” http://www.lle.rochester.edu/omega_facility/omega_ep/, accessed March 2, 2017.

Labutin et al., “Femtosecond Laser-Induced Breakdown Spectroscopy” 31, no. 1 (December 23, 2015): 90–118, doi:10.1039/C5JA00301F.

La-O-Vorakiat, M. Siemens, M.M. Murnane, H.C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, et al., 2009, Ultrafast demagneti-zation dynamics at the m edges of magnetic elements observed using a tabletop high-harmonic soft x-ray source, Physical Review Letters 103(25): 257402-1.

Laser Focus World, “JDSU Acquires Ultrafast Laser Maker Time-Bandwidth Products,” accessed December 11, 2016, http://www.laserfocusworld.com/articles/2014/01/jdsu-acquires-ultrafast-laser-maker-time-bandwidth-products.html.

LASERLAB-EUROPE,” accessed December 9, 2016, http://www.laserlab-europe.net/.

Lasers | Thales Group,” accessed December 11, 2016, https://www.thalesgroup.com/en/worldwide/lasers.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Laux, F. Lureau, C. Radier, O. Chalus, F. Caradec, O. Casagrande, E. Pourtal, et al., 2012, Suppression of parasitic lasing in high energy, high-repetition rate Ti:sapphire laser amplifiers, Opt. Lett. 37(11): 1913-1915.

Lawrence Livermore National Laboratory (LLNL), “FAQs,” accessed December 11, 2016, https://lasers.llnl.gov/about/faqs#nif_cost.

Lawrence Livermore National Laboratory (LLNL), 2016, High-power high-intensity lasers for science and society, white paper submitted to the National Academy of Sciences Committee on the Opportunities in the Science, Applications, and Technology of Intense Ultrafast Lasers, LLNL-TR-704407.

Lawrence Livermore National Laboratory, “Petawatt Laser System Passes a Key Milestone,” January 22, 2016, https://www.llnl.gov/news/petawatt-laser-system-passes-key-miestone.

Ledingham, P. McKenna, T. McCanny, S. Shimizu, J.M. Yang, L. Robson, J. Zweit, et al., 2004, High power laser production of short-lived isotopes for positron emission tomography, J. Phys. D: Appl. Phys. 37(16): 2341.

Ledingham, P. R. Bolton, N. Shikazono, and C.-M. Ma, 2014, Towards laser driven hadron cancer radiotherapy: A review of progress, Appl. Sci. 4(3): 402-443.

Lee and Elijah Kannatey-Asibu, “Experimental Investigation of Laser Shock Peening Using Femtosecond Laser Pulses,” Journal of Laser Applications 23, no. 2 (March 31, 2011): 022004, doi:10.2351/1.3573370.

Lee, 2007, High Energy Density Science at the Linac Coherent Light Source, Lawrence Livermore National Laboratory, UCRL-TR-236300.

Lee, J. H. Sung, H. W. Lee, J. Y. Yoo, and C. H. Nam, 2016, “0.1 Hz Sub-20 fs 4 PW Ti:Sapphire Laser,” presented at Seminar 4, Annual International Laser Physics Workshop, Yerevan, Armenia, July 11-15, http://www.lasphys.com/workshops/abstracts/files/2016/99/ff/0c/fef86f98c626380d3544758d06/abstract.pdf.

Leemans, 2010, White Paper of the ICFA-ICUIL Joint Task Force—High Power Laser Technology for Accelerators, http://icfa-bd.kek.jp/WhitePaper_final.pdf.

Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.S. Mao, D.E. Mittelberger, et al., 2013, BELLA laser and operations, Pp. 1097-1100 in Proceedings of PAC2013 03(A23), paper THYAA1.

Leemans, W. P., et al., “GeV Electron Beams from a Centimetre-Scale Accelerator,” Nature Physics 2, no. 10 (October 2006): 696–99, doi:10.1038/nphys418.

Leemans, W. P., et al., “Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime,” Physical Review Letters 113, no. 24 (December 8, 2014): 245002, doi:10.1103/PhysRevLett.113.245002.

Lenzner et al., “Photoablation with Sub-10 Fs Laser Pulses,” Applied Surface Science 154–155 (February 2000): 11–16, doi:10.1016/S0169-4332(99)00432-8.

Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, and P.B. Corkum, 1994, Theory of high-harmonic generation by low-frequency laser fields, Physical Review A 49(3): 2117-2132.

Li, F.H. Séguin, J.A. Frenje, J.R. Rygg, R.D. Petrasso, R.P.J. Town, P.A. Amendt, et al., 2006, Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography, Phys. Rev. Lett. 97: 135003.

Li, L. Yu, Z. Gan, C. Wang, S. Li, Y. Liu, X. Liang, et al., 2016, “Development of a Super Intense Laser Facility at Shanghai,” presentation at IZEST Conference Extreme Light Scientific and SocioEconomic Outlook, Paris, Nov. 25-29.

Liang, E., 2010, Intense laser pair creation and applications, High Energy Density Physics 6(2): 219-22.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Liang, E., T. Clarke, A. Henderson, W. Fu, W. Lo, D. Taylor, P. Chaguine, et al., 2015, High e+/e− ratio dense pair creation with 1021W.cm−2 laser irradiating solid targets, Scientific Reports 5. doi:10.1038/srep13968.

Lin, X. Deng, D. Fan, and X. Xie, 1999, SG-II laser elementary research and precision SG-II program, Fusion Engineering and Design 44(1–4): 61-66.

Linz and J. Alonso, 2007, What will it take for laser driven proton accelerators to be applied to tumor therapy? Physical Review Accelerators and Beams 10(9): 094801.

Litvak, E.A. Khazanov, and A.M. Sergeev, 2013, Exawatt Center for Extreme Light Studies Project (XCELS), https://gargantua.polytechnique.fr/siatel-web/linkto/mICYYYSJkYY6.

Liu, D. Du, and G. Mourou, “Laser Ablation and Micromachining with Ultrashort Laser Pulses,” IEEE Journal of Quantum Electronics 33, no. 10 (October 1997): 1706–16, doi:10.1109/3.631270.

Liu, S. Banerjee, J. Zhang, S. Chen, K. Brown, J. Mills, N. Powers, B. Zhao, G. Golovin, I. Ghebregziabher, and D. Umstadter, 2013, Repetitive petawatt-class laser with near-diffraction-limited focal spot and transform-limited pulse duration, Proc. SPIE 8599: 859919. .

LLNL, “About NIF & Photon Science,” accessed December 11, 2016, https://lasers.llnl.gov/about.

LLNL, “S&TR | April/May 2011: Going Deep with MEGa-Rays,” 2011, https://str.llnl.gov/AprMay11/barty.html.

Loh, M. Khalil, R.E. Correa, R. Santra, C. Buth, and S.R. Leone, 2007, Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy, Physical Review Letters 98(14): 143601.

Lozhkarev, G.I. Freidman, V.N. Ginzburg, E.V. Katin, E.A. Khazanov, A.V. Kirsanov, G.A. Luchinin, et al., 2007, Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals, Laser Physics Letters 4(6): 421.

Lureau, 2015, “High Power Laser System (HPLS),” in ELI-NP Science Program and Instruments Technical Design Reports, Magurele, Romania, February 18-20, http://www.eli-np.ro/indico/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=22.

Lureau, S. Laux, O. Casagrande, O. Chalus, P.A. Duvochelle, S. Herriot, C. Radier, et al., 2015, Design and initial results of 10 PW Laser for ELI-NP, presented at the 2015 European Conference on Lasers and Electro-Optics, Munich, Germany, June 21-25, Optical Society of America. .

Lureau, S. Lauxa, O. Casagrandea, C. Radiera, O. Chalusa, F. Caradeca, and C. Simon-Boissona, 2012, High energy 1 Hz Titanium Sapphire amplifier for PetaWatt class lasers, in Solid State Lasers XXI: Technology and Devices (W. A. Clarkson and R. K. Shori, eds.), Proc. of SPIE, Vol. 8235, doi: 10.1117/12.908127.

Lutman, F.-J Decker, J. Arthur, M. Chollet, Y. Feng, J. Hastings, Z. Huang, et al., 2014, Demonstration of single-crystal self-seeded two-color x-ray free-electron lasers, Physical Review Letters 113(25): 254801.

Madey, 1971, Stimulated emission of Bremsstrahlung in a periodic magnetic field, J. Appl. Phys. 42: 1906-1913.

Major, S.A. Trushin, I. Ahmad, M. Siebold, C. Wandt, S. Klingebiel, T.J. Wang, et al., 2009, Basic concepts and current status of the petawatt field synthesizer—A new approach to ultrahigh field generation, Laser Review 37(6): 431-436.

Malka, J. Faure, Y.A. Gauduel, E. Lefebvre, A. Rousse, and K.T. Phuoc, 2008, Principles and applications of compact laser–plasma accelerators, Nat. Phys. 4: 447-453.

Malkin, G. Shvets, and N. J. Fisch, 1999, Fast compression of laser beams to highly overcritical powers, Phys. Rev. Lett. 82: 4448.

Malkin, Z. Toroker, and N. J. Fisch, 2014, Exceeding the leading spike intensity and fluence limits in backward Raman amplifiers, Phys. Rev. E 90(6): 063110.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Marshall, P.W. McKenty, J.A. Delettrez, R. Epstein, J.P. Knauer, V.A. Smalyuk, J.A. Frenje, et al., 2009, Plasma-density determination from x-ray radiography of laser-driven spherical implosions, Physics Review Letters 102(18): 185004.

Mason, M. Fitton, A. Lintern, S. Banerjee, K. Ertel, T. Davenne, J. Hill, et al., 2015, Scalable design for a high energy cryogenic gas cooled diode pumped laser amplifier, Applied Optics 54(13): 4227-4238.

Mathias, C. La-O-Vorakiat, P. Grychtol, P. Granitzka, E. Turgut, J.M. Shaw, R. Adam, et al., 2012, Probing the timescale of the exchange interaction in a ferromagnetic alloy, Proceedings of the National Academy of Sciences of the United States of America 109(13): 4792-4797.

Maywar, J.H. Kelly, L.J. Waxer, S.F.B. Morse, I.A. Begishev, J. Bromage, C. Dorrer, J.L. Edwards, L. Folnsbee, and M.J. Guardalben, 2008, OMEGA EP high-energy petawatt laser: progress and prospects, Journal of Physics: Conference Series 112(3): 032007.

McCrory and C. Verdon, “Collaboration Ignites Laser Advances,” Lawrence Livermore National Laboratory, June 1999, https://str.llnl.gov/str/Verdon.html.

McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, and C.K. Rhodes, 1987, Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gasses, Journal of the Optical Society of America B 4: 595-601.

Medalia, “Detection of Nuclear Weapons and Materials: Science, Technologies, and Observations,” 2010, www.crs.gov.

Medvedev and A. Loeb, 1999, Generation of magnetic fields in the relativistic shock of gamma-ray burst sources, ApJ, 526: 697-706.

Medvedev and O.V. Zakutnyaya, 2009, Magnetic fields and cosmic rays in GRBs: a self-similar collisionless foreshock, The Astrophysical Journal 696: 2269–2274.

Menlo Systems, “Optical Frequency Combs, Terahertz Systems, Femtosecond Fiber Lasers | Menlo Systems,” accessed December 11, 2016, http://www.menlosystems.com/.

Meuren and A. Di Piazza, 2011, Quantum electron self-interaction in a strong laser field, Phys. Rev. Lett. 107(26): 260401.

Meuren et al., “High-Energy Recollision Processes of Laser-Generated Electron-Positron Pairs,” Physical Review Letters 114, no. 14 (April 9, 2015): 143201, doi:10.1103/PhysRevLett.114.143201.

Meuren, Christoph H. Keitel, and Antonino Di Piazza, “Semiclassical Picture for Electron-Positron Photoproduction in Strong Laser Fields,” Physical Review D 93, no. 8 (April 21, 2016): 085028, doi:10.1103/PhysRevD.93.085028.

Meyerhofer, 2014, “OMEGA EP OPAL: A Path to a 75-PW Laser System,” presented at the 56th Annual Meeting of the American Physical Society, Division of Plasma Physics, New Orleans, La., October 27–31.

Meyerhofer, G. Mourou, and M. Richardson, 2002, The Science and Applications of Ultrafast Lasers: Opportunities in Science and Technology Using the Brightest Light Known to Man, presented at the SAUUL Workshop, Washington, D.C., June 17-19.

Miao, P. Charalambous, J. Kirz, and D. Sayre, 1999, Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens, Nature 400(6742): 342-344.

Miao, T. Ishikawa, I.K. Robinson, and M.M. Murnane, 2015, Beyond crystallography: Diffractive im-aging using coherent x-ray light sources, Science 348(6234): 530-535.

Michel, 2016, ELBE Center for High-Power Radiation Sources, Journal of Large-Scale Research Facilities 2: A39. .

Mimura, H. Yumoto, S. Matsuyama, T. Koyama, K. Tono, Y. Inubushi, T. Togashi, et al., 2014, Generation of 1020 W cm−2 hard x-ray laser pulses with two-stage reflective focusing system, Nature Communications 5: 3539.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Miquel, 2016, LMJ & PETAL status and first experiments, J. Phys.: Conf. Ser. 717(1): 012084.

Morse, “Omega Laser Facility and User Group Overview,” presentation to the committee on July 14, 2016.

Moses and the NIC Collaborators, 2013, The National Ignition Campaign: status and progress, Nuclear Fusion 53(10): 104020.

Moses, J. Atherton, L. Lagin, D. Larson, C. Keane, B. MacGowan, R. Patterson, M. Spaeth, B. Van Wonterghem, P. Wegner, and R. Kauffman, 2016, The National Ignition Facility: Transition to a user facility, Journal of Physics: Conference Series 688(1).

Moulton, 1982, Titanium-doped sapphire: A new tunable solid-state laser, in Physics News (Phillip F. Schewe, ed.), American Institute of Physics.

Moulton, 1985, Spectroscopic and laser characteristics of Ti:AI2O3, J. Opt. Soc. Am. B 3(1): 125-133.

Mourou et al., Method for controlling configuration of laser induced breakdown and ablation, US5656186 A, filed April 8, 1994, and issued August 12, 1997, http://www.google.com/patents/US5656186.

Mourou, G.A. ,G. Korn, W. Sandner, and J.L. Collier, 2011, Extreme Light Infrastructure Whitebook: Science and Technology with Ultra-Intense Lasers, Thoss Media, Berlin, http://www.eli-beams.eu/wp-content/uploads/2011/08/ELI-Book_neues_Logo-edited-web.pdf.

Mourou, S. Mironov, E. Khazanov, and A. Sergeev, 2014, Single cycle thin film compressor opening the door to Zeptosecond-Exawatt physics, Eur. Phys. J. Spec. Top. 223(6): 1181-1188.

Mourou, W. Brocklesby, T. Tajima, and J. Limpert, 2013, The future is fibre accelerators, Nature Photonics 7: 258-261.

Müller, C. Deneke, and C.H. Keitel, 2008, Muon-pair creation by two x-ray laser photons in the field of an atomic nucleus, Phys. Rev. Lett. 101(6): 060402.

Müller, Carsten, Karen Z. Hatsagortsyan, and Christoph H. Keitel, “Particle Physics with a Laser-Driven Positronium Atom,” Physics Letters B 659, no. 1 (January 17, 2008): 209–13, doi:10.1016/j. physletb.2007.11.002.

Nakatsutsumi and Th. Tschentscher, 2013, Conceptual Design Report: Scientific Instrument HED, European X-Ray Free-Electron Laser Facility GmbH, Hamburg, Germany.

National Energetics – High-Energy and Ultra-Intense Lasers and Laser Systems.,” accessed December 11, 2016, http://nationalenergetics.com/.

National Ignition Facility and Photon Science, “What Is NIF?”, https://lasers.llnl.gov/about/what-is-nif, accessed January 30, 2017.

National Institutes of Health, “NIH Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs,” accessed December 11, 2016, https://sbir.nih.gov/.

National Nuclear Security Administration (NNSA), “Stewardship Science Academic Alliances,” National Nuclear Security Administration, December 21, 2011, https://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/stockpilestewardship/upaa/ssaa.

National Nuclear Security Administration, “Maintaining the Stockpile,” Maintaining the Stockpile, 2017, https://nnsa.energy.gov/ourmission/maintainingthestockpile.

National Research Council (NRC), 1998, Harnessing Light: Optical Science and Engineering for the 21st Century, The National Academies Press, Washington, D.C.

National Research Council, 2013, Optics and Photonics: Essential Technologies for Our Nation, The National Academies Press, Washington, D.C.

National Science Foundation (NSF), “NSF/DOE Partnership in Basic Plasma Science and Engineering (Nsf16564) | NSF - National Science Foundation,” accessed December 11, 2016, https://www.nsf.gov/pubs/2016/nsf16564/nsf16564.htm.

Negoita, M. Roth, P.G. Thirolf, S. Tudisco, F. Hannachi, S. Moustaizis, I. Pomerantz, et al., 2016, Laser driven nuclear physics at ELI-NP, Romanian Reports in Physics 68: S37–S144.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Neitz, “Stochasticity Effects in Quantum Radiation Reaction,” Physical Review Letters 111, no. 5 (2013), doi:10.1103/PhysRevLett.111.054802.

Neuenschwander et al., “Optimization of the Volume Ablation Rate for Metals at Different Laser Pulse-Durations from Ps to Fs,” vol. 8243, 2012, 824307-824307–13, doi:10.1117/12.908583.

Newport Corporation,” accessed December 11, 2016, https://www.newport.com/.

Niikura, N. Dudovich, D.M. Villeneuve, and P.B. Corkum, 2010, Mapping molecular orbital symmetry on high-order harmonic generation spectrum using two-color laser fields, Physical Review Letters 105(5).

Nobel Prize, “Laser Facts,” accessed January 8, 2017, https://www.nobelprize.org/educational/physics/laser/facts/history.html.

Novák, M. Divoký, H. Turčičová, and P. Straka, 2013, Design of a petawatt optical parametric chirped pulse amplification upgrade of the kilojoule iodine laser PALS, Laser and Particle Beams 31(2): 211–218.

NRC, 2003, Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century, The National Academies Press, Washington, D.C.

NRC, 2003, Frontiers in High Energy Density Physics: The X-Games of Contemporary Science, The National Academies Press, Washington, D.C.

NRC, 2006, Controlling the Quantum World: The Science of Atoms, Molecules, and Photons, The National Academies Press, Washington, D.C.

NSF MPSAC, “Report of the Optics and Photonics Subcommittee of the MPS Advisory Committee,” 2015, https://nsf.gov/mps/advisory/mpsac_other_reports/optics_and_photonics-final_from_subcommittee.pdf.

NSF, “NSF Award Search: Award#1548924 - Science and Technology Center on Real-Time Functional Imaging (STROBE),” accessed December 11, 2016, https://www.nsf.gov/awardsearch/showAward?AWD_ID=1548924.

NSF, “NSF PHY Midscale Dear Colleague Letter,” accessed December 11, 2016, https://www.nsf.gov/pubs/2014/nsf14116/nsf14116.jsp.

Onefive GmbH - Femtosecond and Picosecond Lasers,” accessed December 11, 2016, http://www.onefive.com/.

Oppelt, M. Baumann, R. Bergmann, E. Beyreuther, K. Brüchner, J. Hartmann, L. Karsch, et al., 2015, Comparison study of in vivo dose response to laser-driven versus conventional electron beam, Radiat Environ Biophys 54(2): 155–166.

Optics.org, “Coherent Extends Ultrafast Expansion with $52M Lumera Laser Buy-Out,” accessed December 11, 2016, http://optics.org/news/3/12/35.

Orth, C. D., S. A. Payne, and W. F. Krupke, “A Diode Pumped Solid State Laser Driver for Inertial Fusion Energy,” Nuclear Fusion 36, no. 1 (1996): 75, doi:10.1088/0029-5515/36/1/I06.

Osvay, 2015, “The ELI attosecond light pulse source,” http://www.eli-alps.hu/sites/default/files/tangows/20150224-0945-ELI-ELIALPS-General-KarolyOsvay.pdf.

Panagiotopoulos, P. Whalen, M. Kolesik, and J.V. Moloney, 2015, Super high power mid-infrared femtosecond light bullet, Nat. Phot. 9: 543-548. .

Papadopoulos, P. Ramirez, A. Pellegrina, N. Lebas, C. Leblanc, G. Chériaux, J. P. Zou, et al., 2015, “High-contrast 10-fs OPCPA-based Front-End for the Apollon-10PW laser,” paper ATu4A.3 in Advanced Solid State Lasers, OSA Technical Digest.

Particle Physics Project Prioritization Panel, 2014, Building for Discovery: Strategic Plan for US Particle Physics in the Global Context, https://science.energy.gov/~/media/hep/hepap/pdf/May-2014/FINAL_P5_Report_Interactive_060214.pdf.

Patel, 2006, “Titan Laser Jupiter Laser Facility,” presented at the Fusion Science Center Meeting, Livermore, Calif., Aug. 28-29.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Paul, E.S. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H.G. Muller, and P. Agostini, 2001, Observation of a train of attosecond pulses from high harmonic generation, Science 292(5522): 1689-1692.

Paul, F. Falcoz, E. Gontier, S. Branly, L. Vigroux, and G. Riboulet, 2016, Towards high repetition rate ultra-intense lasers, latest developments at Amplitude Technologies, in Proceedings High-Brightness Sources and Light-Driven Interactions, Long Beach, California, March 20-22, Optical Society of America.

Pellegrini, C., A. Marinelli, and S. Reiche, 2016, The physics of X-ray free-electron lasers, Reviews of Modern Physics 88(1): 015006.

Perkins, R. Betti, K.N. LaFortune, and W.H. Williams, 2009, Shock ignition: A new approach to high gain inertial confinement fusion on the National Ignition Facility, Phys. Rev. Lett. 103: 045004.

Perry, “Crossing the Petawatt Threshhold,” Lawrence Livermore National Laboratory, December 1996, https://str.llnl.gov/str/Petawatt.html.

Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, et al., 1999, Petawatt laser pulses, Opt. Lett. 24(3): 160-162.

Perry, Michael D., and Gerard Mourou, “Terawatt to Petawatt Subpicosecond Lasers,” Science 264, no. 5161 (May 13, 1994): 917–24, doi:10.1126/science.264.5161.917.

Photonics21, “2020 Photonics Roadmap,” accessed January 8, 2017, http://www.photonics21.org/download/Brochures/Photonics_Roadmap_final_lowres.pdf.

Pike, F. Mackenroth, E.G. Hill, S.J. Rose, 2014, A photon–photon collider in a vacuum hohlraum, Nature Photonics 8: 434–436.

Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, 2006, Broadband dielectric function of nonequilibrium warm dense gold, Phys. Rev. Lett. 96: 255003.

Polynkin, Pavel G., “Experimental Component of the AFOSR-Supported MURI Program on Ultrafast Laser Filamentation in Transparent Dielectric Media,” vol. 8547, 2012, 85470H–85470H–7, doi:10.1117/12.977179.

Pomerantz, E. McCary, A.R. Meadows, A. Arefiev, A.C. Bernstein, C. Chester, J. Cortez, et al., 2014, Ultrashort pulsed neutron source, PRL 113(18): 184801.

Popmintchev, C. Hernandez-Garcia, F. Dollar, C. Mancuso, J.A. Perez-Hernandez, M-C Chen, A. Hankla, et al., 2015, Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas, Science 350(6265): 1225-1231.

Popmintchev, M.C. Chen, P. Arpin, M.M. Murnane, and H.C. Kapteyn, 2010, The attosecond nonlinear optics of bright coherent x-ray generation, Nature Photonics 4(12): 822–832.

Popmintchev, M-C Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, et al., 2012, Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers, Science 336(6086): 1287-1291.

Pouli et al., “Femtosecond Laser Cleaning of Painted Artefacts; Is This the Way Forward?,” in Lasers in the Conservation of Artworks (Springer, Berlin, Heidelberg, 2007), 287–93, doi:10.1007/9783-540-72310-7_33.

Prat and S. Reiche, 2015, Simple method to generate terawatt-attosecond x-ray free-electron-laser pulses, Phys. Rev. Lett. 114: 244801.

Pukhov and J. Meyer-ter-vehn, 1997, Laser hole boring into overdense plasma and relativistic electron currents for fast ignition of ICF targets, Phys. Rev. Lett. 79(14): 2686-2689.

Qiao, A. Kalb, M. J. Guardalben, G. King, D. Canning, and J. H. Kelly, 2007, Large-aperture grating tiling by interferometry for petawatt chirped-pulse–amplification systems, Opt. Exp. 23(15): 9562-9574.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Raschke, S. Spickermann, T. Toncian, M. Swantusch, J. Boeker, U. Giesen, G. Iliakis, O. Willi, and F. Boege, 2016, Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams, Scientific Reports 6: 32441.

Raspa et al., “Plasma Focus as a Powerful Hard X-Ray Source for Ultrafast Imaging of Moving Metallic Objects,” Brazilian Journal of Physics 34, no. 4B (December 2004): 1696–99, doi:10.1590/S010397332004000800034.

Ratner, et al., 2015, Experimental demonstration of a soft x-ray self-seeded free-electron laser, Physical Review Letters 114(5): 054801.

Rausch, T. Binhammer, A. Harth, F. X. Kaertner, and U. Morgner, 2008, Few-cycle femtosecond field synthesizer, Opt. Exp. 16(22): 17410-17419.

Reiche, P. Musumeci, C. Pellegrini, and J. B. Rosenzweig, 2008, Development of ultra-short pulse, single coherent spike for SASE X-Ray FELs, Nucl. Instrum. Methods Phys. Res. Sect. -Accel. Spectrometers Detect. Assoc. Equip 593(1-2): 45-48.

Reipurth, B. and S. Heathcote, 1997, 50 years of Herbig-Haro research, pp. 3-18 in Herbig-Haro Flows and the Birth of Stars: Proceedings of the 182nd Symposium of the International Astronomical Union (B. Reipurth and C. Bertout, eds.), Springer, The Netherlands.

Remington, R.P. Drake, and D.D. Ryutov, 2006, Experimental astrophysics with high power lasers and Z pinches, Rev. Mod. Phys. 78: 755-807.

Ren, W. Cheng, S. Li, and S. Suckewer, 2007, A new method for generating ultraintense and ultrashort laser pulses, Nature Phys. 3:732-736.

Ridgers, C.S. Brady, R. Duclous, J.G. Kirk, K. Bennett, T.D. Arber, A.P.L. Robinson, and A.R. Bell, 2012, Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids, Phys Rev Letters 108(16): 165006.

Rohwer, S. Hellmann, M. Wiesenmayer, C. Sohrt, A. Stange, B. Slomski, A. Carr, et al., 2011, Collapse of long-range charge order tracked by time-resolved photoemission at high momenta, Nature 471(7339): 490-493.

Ros, K. Cassou, B. Cros, S. Daboussi, J. Demailly, O. Guilbaud, G. Jamelot, et al., 2011, LASERIX: An open facility for developments of EUV and soft X-ray lasers and applications, Nucl. Instr. Meth. Phys. Res. A 653: 76-79.

Rosenzweig, D. Alesini, G. Andonian, M. Boscolo, M. Dunning, L. Faillace, M. Ferrario, et al., 2008, Generation of ultra-short, high brightness electron beams for single-spike SASE FEL operation, Nucl. Instrum. Methods Phys. Res. Sect. -Accel. Spectrometers Detect. Assoc. Equip 593 (1–2): 39–44.

Roso, 2011, Salamanca Pulsed Laser Center: the Spanish petawatt, Proc. SPIE 8001: 800113.

Ross et al, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers”, Optics Communications, Volume 144, Issue 1, 1997, Pages 125-133, ISSN 0030-4018.

Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, et al., 2013, Bright laser-driven neutron source based on the relativistic transparency of solids, PRL 110(4): 044802.

Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, W. Fountain, J. Johnson, et al., 2001, Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Letts. 86(3): 436.

Rozanov, S.Y. Gus’kov, G.A. Vergunova, N.N. Demchenko, R.V. Stepanov, I.Y. Doskoch, R. A. Yakhin, and N.V. Zmitrenko, 2016, Direct drive targets for the megajoule facility UFL-2M, J. Phys.: Conf. Ser. 688(1): 012095.

Rudolf, C. La-O-Vorakiat, M. Battiato, R. Adam, J.M. Shaw, E. Turgut, P. Maldonado, et al., 2012, Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current, Nature Communications 3: 1037.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Rundquist, C.G. Durfee, Z.H. Chang, C. Herne, S. Backus, M.M. Murnane, and H.C. Kapteyn, 1998, Phase-matched generation of coherent soft X-rays, Science 280(5368): 1412-1415.

Ruppe, M. Sheikhsofla, S. Chen, H. Pei, J. Nees, R. Wilcox, W. Leemans, and A. Galvanauskas, 2016, “Progress in Coherent Pulse Stacking: A Pathway Toward Compact kHz Repetition Rate LPA Drivers,” 17th Advanced Accelerator Concepts Workshop, Aug. 1-5, Gaylord National Resort, Baltimore. https://indico.syntek.org/event/4/session/15/contribution/234.

Rus, P. Bakule, D. Kramer, G. Korn, J.T. Gren, J. Novak, M. Fibrich, et al., 2013, ELI-Beamlines laser systems: status and design options, Proc. SPIE 8780: 87801T.

Ryan Hoffman, “USPL Applications for Navy,” n.d.

Sadler, R. Nathvani, P. Oleśkiewicz, L.A. Ceurvorst, N. Ratan, M.F. Kasim, R.M.G.M. Trines, R. Bingham, and P.A. Norreys, 2015, Compression of x-ray free electron laser pulses to attosecond duration, Scientific Reports 5: 16755.

Saemann, K. Eidmann, I.E. Golovkin, R.C. Mancini, E. Andersson, E. Förster, and K. Witte, 1999, Isochoric heating of solid aluminum by ultrashort laser pulses focused on a tamped target, Phys. Rev. Lett. 82: 4843.

Sakimoto, Mark I Rosenblatt, and Dimitri T Azar, “Laser Eye Surgery for Refractive Errors,” The Lancet 367, no. 9520 (May 5, 2006): 1432–47, doi:10.1016/S0140-6736(06)68275-5.

Sandberg, A. Paul, D.A. Raymondson, S. Hadrich, D.M. Gaudiosi, J. Holtsnider, R.I. Tobey, et al., 2007, Lensless diffractive imaging using tabletop coherent high-harmonic soft-x-ray beams, Physical Review Letters 99(9): 098103-098104.

Sandhu, E. Gagnon, R. Santra, V. Sharma, W. Li, P. Ho, P. Ranitovic, C.L. Cocke, M.M. Murnane, and H.C. Kapteyn, 2008, Observing the creation of electronic feshbach resonances in soft x-ray-induced O2 dissociation, Science 322(5904): 1081-1085.

SAUUL_report.Pdf,” accessed October 16, 2016, http://science.energy.gov/~/media/bes/csgb/pdf/docs/Reports%20and%20Activities/Sauul_report_final.pdf.

Schafer, B. Yang, L.F. DiMauro, and K.C. Kulander, 1993, Above threshold ionization beyond the high harmonic cutoff, Phys. Rev. Lett. 70: 1599-1602.

Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, 2003, Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation, Opt. Lett. 28(11): 947-949.

Schoenlein, R. W., et al., “Femtosecond X-Ray Pulses at 0.4 Å Generated by 90° Thomson Scattering: A Tool for Probing the Structural Dynamics of Materials,” Science 274, no. 5285 (October 11, 1996): 236–38, doi:10.1126/science.274.5285.236.

Schramm and S. Bock, 2013, “Status of Draco PW,” presented at the Characterisation of Ultra-Short High Energy Laser Pulses Workshop, Abingdon, UK, Sept. 23-24. .

Schwarz, P. Rambo, M. Geissel, A. Edens, I. Smith, E. Brambrink, M. Kimmel, and B. Atherton, 2008, Activation of the Z-petawatt laser at Sandia National Laboratories, J. Phys.: Conf. Ser. 112: 032020.

Scott, C. Wilks, J.D. Bonlie, E.P. Liang, J. Myatt, D.F. Price, D.D. Meyerhofer, and P. Beiersdorfer, 2009, Relativistic positron creation using ultraintense short pulse lasers, PRL 102(10): 105001.

Seaberg, B. Zhang, D.F. Gardner, E.R. Shanblatt, M.M. Murnane, H.C. Kapteyn, and D.E. Adams, 2014, Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography, Optica 1(1): 39-44.

Sekine, Y. Takeuchi, T. Kurita, Y. Hatano, Y. Muramatsu, Y. Mizuta, Y. Kabeya, Y. Tamaoki, and Y. Kato, 2016, “High Gain, High Efficiency Cryogenic Yb:YAG Ceramics Amplifier for Several Hundred Joules DPSSL,” in Lasers Congress 2016, Optical Society of America.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Shanblatt, C. Porter, D.F. Gardner, G.F. Mancini, R. Karl, C. Bevis, M. Tanksalvala, M. Murnane, H. Kapteyn, and D. Adams, 2015, “Reflection Mode Tabletop Coherent Diffraction Imaging of Buried Nanostructures,” presented at the Frontiers in Optics 2015, San Jose, California, October 18.

Shay, 2006, Theory of electronically phased coherent beam combination without a reference beam, Optics Express 14(25): 12188-12195.

Shaykin, G.I. Freidman, S.G. Garanin, V.N. Ginzburg, E.V. Katin, A.I. Kedrov, E.A. Khazanov, et al., 2009, 1 petawatt OPCPA laser in Russia: status and expectations, in Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, June 14-19, Munich, CLEO Europe - EQEC.

Shigeyama and K. Nomoto, 1990, Theoretical light curve of SN 1987A and mixing of hydrogen and nickel in the ejecta, Astrophys. J. 360: 242–256.

Shore and K.C. Kulander, 1989, Generation of optical harmonics by intense pulses of laser-radiation, Journal of Modern Optics 36(7): 857-875.

Siebold, F. Roeser, M. Loeser, D. Albach, and U. Schramm, 2013, PEnELOPE: a high peak-power diode-pumped laser system for laser-plasma experiments, PROC SPIE 8780: 878005.

Siegman, 1986, Lasers, Revised edition, University Science Books, Mill Valley, .

Siemens, Q. Li, R.G. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, and H.C. Kapteyn, 2010, Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams, Nature Materials 9(1): 26-30.

SLAC National Accelerator Laboratory, “Industry,” Research Partnerships, March 13, 2015, https://partnerships.slac.stanford.edu/industry.

SLAC National Accelerator Laboratory, 2015, New Science Opportunities Enabled by LCLS-II X-ray Lasers, Menlo Park, Calif., June 1. https://portal.slac.stanford.edu/sites/lcls_public/Documents/LCLS-IIScienceOpportunities_final.pdf?Mobile=1.

Smith and J. J. Smith, 2011, Mode instability in high power fiber amplifiers, Opt. Express 19(11): 10180-10192.

Smith, J.H. Eggert, R. Jeanloz, T.S. Duffy, D.G. Braun, J.R. Patterson, R.E. Rudd, et al., 2014, Ramp compression of diamond to five terapascals, Nature 511: 330-333.

Snavely, M. Key, S. Hatchett, T.E. Cowan, M. Roth, T.W. Phillips, M.A. Stoyer, et al., 2000, Intense high energy proton beams from Petawatt Laser irradiation of solids, Phys. Rev. Lett. 85(14): 2945-2948.

Snitzer, 1961, Optical maser action of Nd3+ in a barium crown glass, Phys. Rev. Lett. 7: 444.

Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, 1988, Double clad, offset core Nd fiber laser, in Optical Fiber Sensors, Vol. 2, Optical Society of America, New Orleans.

Sokolov, N.M. Naumova, J.A. Nees, and G.A. Mourou, 2010, Pair creation in QED-strong pulsed laser fields interacting with electron beams, Phys. Rev. Lett. 105(19): 195005.

Solodov, R. Betti, J.A. Delettrez, and C.D. Zhou, 2007, Gain Curves and hydrodynamic simulations of ignition and gain for direct-drive fast ignition targets, Physics of Plasmas 14: 101063.

Spectra-Physics, “Spectra-Physics Completes Acquisition of FEMTOLASERS,” accessed December 11, 2016, http://www.spectra-physics.com/company/news/spectra-physics-completes-acquisition-of-femtolasers.

Stacey, 2005, High pressure equations of state and planetary interiors, Rep. Prog. Phys. 68: 341.

Stanford Linear Accelerator Center (SLAC), 2003, LCLS: The First Experiments, http://slac.stanford.edu/pubs/slacreports/reports03/slac-r-611.pdf.

Steen and Jyotirmoy Mazumder, Laser Material Processing (London: Springer London, 2010), http://link.springer.com/10.1007/978-1-84996-062-5.

Steinke, J. van Tilborg, C. Benedetti, C.G.R. Geddes, C.B. Schroeder, J. Daniels, K.K. Swanson, et al., 2016, Multistage coupling of independent laser-plasma accelerators, Nature 530: 190.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Stokowski, S.E,W.E Martin, and S.M Yarema, “Optical and Lasing Properties of Fluorophosphate Glass,” Journal of Non-Crystalline Solids 40, no. 1–3 (July 1980): 481–87, doi:10.1016/00223093(80)90123-4.

Stratakis, “Ultrafast Laser Micro/Nano Processing for Microfluidic and Tissue Engineering Apllications,” in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), 2011, 1–1, doi:10.1109/CLEOE.2011.5943318. IEEE Photonics Society, European Physical Society, and the Optical Society, Munich, Germany.

Strauss, Bruce,“Fundamental Research In Superconducting Rf Cavity Design | U.S. DOE Office of Science (SC),” accessed July 1, 2017, https://science.energy.gov/hep/funding-opportunities/fundamental-research-in-superconducting-rf-cavity-design/.

Strickland Donna, and Gerard Mourou, “Compression of Amplified Chirped Optical Pulses,” Optics Communications 56, no. 3 (December 1, 1985): 219–21, doi:10.1016/0030-4018(85)90120-8.

Stuart, T. Robinson, D. Hillier, N. Hopps, B. Parry, I. Musgrave, G. Nersisyan, A. Sharba, M. Zepf, and R. A. Smith, 2016, Comparative study on the temporal contrast of femtosecond mode-locked laser oscillators Opt. Lett. 41(14): 3221-3224.

Stupakov, 2009, Using the beam-echo effect for generation of short-wavelength radiation, Physical Review Letters 102(7): 074801.

Sutherland, 1990, Gamma-rays and x-rays from supernovae, p. 111 in Supernovae (A.G. Petschek, ed.), Springer-Verlag, New York.

Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, E.M. Campbell, and M.D. Perry, 1994, Ignition and high gain with ultrapowerful lasers, Physics of Plasmas 1:1626.

Tajima, W. Brocklesby, and G. Mourou, 2013, ICAN: The next laser powerhouse, Optics & Photonics News 24(5): 36-43.

Tang, A. Lyachev, C. Hernandez-Gomez, I. Musgrave, I. N. Ross, O. Chekhlov, P. Matousek, and J. Collier, 2010, Novel ultra broadband front-end system for Vulcan 10 PW OPCPA Project, in Lasers, Sources and Related Photonic Devices, San Diego, Calif., Jan. 31-Feb. 3, Optical Society of America, paper AME1.

Tang, I. N. Ross, C. Hernandez-Gomez, G. H. C. New, I. Musgrave, O. V. Chekhlov, P. Matousek, and J. L. Collier, 2008, Optical parametric chirped-pulse amplification source suitable for seeding high-energy systems, Opt. Lett. 33(20): 2386-2388.

Tao, C. Chen, T. Szilvási, M. Keller, M. Mavrikakis, H. Kapteyn, and M. Murnane, 2016, Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids, Science 353(6294): 62-67.

The White House, “FACT SHEET.” last update December 21, 2016, https://obamawhitehouse.archives.gov/the-press-office/2016/12/21/fact-sheet-obama-administration-announces-new-manufacturing-usa.

The White House, “President Obama Announces New Manufacturing Innovation Institute Competition,” last update October 3, 2014, https://www.whitehouse.gov/the-press-office/2014/10/03/fact-sheet-president-obama-announces-new-manufacturing-innovation-instit.

Thomann, R. Lock, V. Sharma, E. Gagnon, S.T. Pratt, H.C. Kapteyn, M.M. Murnane, and W. Li, 2008, Direct measurement of the transition dipole for single photoionization of N2 and CO2, Journal of Physical Chemistry A 112 (39): 9382–9386.

Thompson, 2014, Proceedings of the workshop ‘Physics and Applications of High Brightness Beams: Towards a Fifth Generation Light Source’ Towards Zeptosecond-Scale Pulses from X-Ray Free-Electron Lasers, Phys. Procedia 52: 62-67.

Tigner, 2001, Does accelerator-based particle physics have a future? Phys. Today 54(1): 36.

Titov, B. Kämpfer, and H. Takabe, 2009, Dimuon production by laser-wakefield accelerated electrons, Phys. Rev. ST Accel. Beams 12(11): 111301.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Titov, B. Kämpfer, H. Takabe, and A. Hosaka, 2013, Breit-Wheeler process in very short electromagnetic pulses, Physical Review A 87(4): 042106.

Tokarev et al., “Optimization of Plasma Effect in Laser Drilling of High Aspect Ratio Microvias,” Laser Physics 25, no. 5 (2015): 056003, doi:10.1088/1054-660X/25/5/056003.

Toth, J.C. Kieffer, S. Fourmaux, T. Ozaki, and A. Krol, 2005, In-line phase-contrast imaging with a laser-based hard x-ray source, Rev. Sci. Instrum. 76: 083701.

Trebino, R., P. Gabolde, P. Bowlan, and S. Akturk, N.d., “Measuring Everything You’ve Always Wanted to Know about an Ultrashort Laser Pulse (but were afraid to ask),” presented at the Georgia Tech School of Physics, Atlanta, http://slideplayer.com/slide/3733608/.

Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, 2011, Production of picosecond, kilojoule, and petawatt laser pulses via Raman amplification of nanosecond pulses, Phys. Rev Lett. 107(10): 105002.

Trines, F. Fiúza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, 2011, Simulations of efficient Raman amplification into the multipetawatt regime, Nature Physics 7: 87-92.

TRUMPF Group, “Facts and Figures - TRUMPF Group,” accessed December 11, 2016, http://www.trumpf.com/en/company/facts-and-figures.html.

Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and F. Krausz, 2006, Route to intense single attosecond pulses, New J. Phys. 8: 1-20.

U.S. Department of Energy (DOE) Office of Science, “FES Budget | U.S. DOE Office of Science (SC),” accessed December 11, 2016, http://science.energy.gov/budget/budget-by-program/fes-budget/.

University of Michigan, “Center for Ultrafast Optical Science,” accessed December 11, 2016, http://cuos.engin.umich.edu/.

UNL | Novel X-Ray Method Could Detect Nuclear Materials | Office of Research & Economic Development,” accessed June 30, 2017, http://research.unl.edu/blog/novel-x-ray-method-could-detect-nuclear-materials/.

US ITER,” accessed December 11, 2016, https://www.usiter.org/.

Utéza, “Surface Ablation of Dielectrics with Sub-10 Fs to 300 Fs Laser Pulses: Crater Depth and Diameter, and Efficiency as a Function of Laser Intensity,” Journal of Laser Micro/Nanoengineering 5, no. 3 (December 2010): 238–41, doi:10.2961/jlmn.2010.03.0011.

Vorobyev and Chunlei Guo, “Enhanced Absorptance of Gold Following Multipulse Femtosecond Laser Ablation,” Physical Review B 72, no. 19 (November 21, 2005): 195422, doi:10.1103/ PhysRevB.72.195422.

Vorontsov and V. P. Sivokon, 1998, Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction, J. Opt. Soc. Am. A 15(10): 2745-2758.

W. Wessel et al., “Use of Femtosecond Laser-Induced Breakdown Spectroscopy (Fs-LIBS) for Micro-Crack Analysis on the Surface,” Engineering Fracture Mechanics, International Conference on Crack Paths 2009, 77, no. 11 (July 2010): 1874–83, doi:10.1016/j.engfracmech.2010.03.020.

Wagner, A. Wuest, I.P. Christov, T. Popmintchev, X.B. Zhou, M.M. Murnane, and H.C. Kapteyn, 2006, Monitoring molecular dynamics using coherent electrons from high harmonic generation, Proceedings of the National Academy of Sciences of the United States of America 103(36): 13279-13285.

Wahlstrand, Y.-H. Cheng, and H.M. Milchberg, 2012, Absolute measurement of the transient optical nonlinearity in N2, O2, N2O, and Ar, Phys. Rev. A 85(4): 043820.

Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, and Z. Wei, 2011, High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier, Opt. Lett. 36(16): 3194-3196.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Wang, G. Xu, Y. Dai, Z. Lin, and J. Zhu, 2011, Recent progress on the PW beamline for SG-II-U laser facility, Pp. 1-2 in CLEO: 2011- Laser Science to Photonic Applications, Baltimore, Md., May 1-6.

Wenz, S. Schleede, K. Khrennikov, M. Bech, P. Thibault, M. Heigoldt, F. Pfeiffer, and S. Karsch, 2015, Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source, Nature Communications 6: 7568.

Wyatt, P. Oliveira, A. Boyle, Y. Tang, M. Galimberti, I. N. Ross, I. O. Musgrave, C. Hernandez, and J. Collier, 2015, “Ultra-Broadband Spectral Phase Control in the Vulcan 20PW Upgrade Front End,” in 2015 European Conference on Lasers and Electro-Optics, Munich, June 21-25, Optical Society of America.

Xie, J. Zhu, Q. Yang, J. Kang, H. Zhu, A. Guo, P. Zhu, and Q. Gao, 2015, Multi petawatt laser design for the SHENGUANG II laser facility, Proc. SPIE 9513, High-Power, High-Energy, and High-Intensity Laser Technology II, Prague, Czech Republic, April 13.

Xu, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, et al., 2013, Pulse temporal quality improvement in a petawatt Ti:sapphire laser based on cross-polarized wave generation, Opt. Commun. 313: 175–179.

Xu, L. Yu, X. Liang, Y. Chu, Z. Hu, L. Ma, Y. Xu, et al., 2013, High-energy noncollinear optical parametric–chirped pulse amplification in LBO at 800 nm, Opt. Lett. 38(22): 4837-4840.

Xu, T. Wang, Z. Li, and J. Zhu, 2008, 1 kJ petawatt laser system for SG-II-U program, The Review of Laser Engineering 36(APLS): 1172-1175.

Yamanaka, H. Azechi, Y. Fujimoto, H. Fujita, Y. Izawa, T. Jitsuno, Y. Kitagawa, et al., 2002, “Progress in Direct-Drive Laser Fusion UsingXII/PW Facility,” presented at the 19th Fusion Energy Conference, Lyon, France, Oct. 14-19.

Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, et al., 2014, Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons, Physical Review Letters 112(20): 207001. .

Yanovsky, V., et al., “Ultra-High Intensity- 300-TW Laser at 0.1 Hz Repetition Rate.,” Optics Express 16, no. 3 (February 4, 2008): 2109–14, doi:10.1364/OE.16.002109.

Yogo, K. Sato, M. Nishikino, M. Mori, T. Teshima, H. Numasaki, M. Murakami, et al., 2009, Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells, Applied Physics Letters 94(18): 181502.

Yogo, T. Maeda, T. Hori, H. Sakaki, K. Ogura, M. Nishiuchi, A. Sagisaka, et al., 2011, Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline, Applied Physics Letters 98: 053701. .

Yu, 1991, Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers, Physical Review A 44(8): 5178–5193.

Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, and T. Y. Fan, 2011, Coherent combining of a 4 kW, eight-element fiber amplifier array, Opt. Lett. 36(14): 2686-2688.

Yu, X. Liang, L. Xu, W. Li, C. Peng, Z. Hu, C. Wang, et al., 2015. Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm, Opt. Lett. 40(14): 3412-3415.

Yu, Kuchiev, “Production of High-Energy Particles in Laser and Coulomb Fields and the <span Class,” Physical Review Letters 99, no. 13 (2007), doi:10.1103/PhysRevLett.99.130404.

Yumoto, H. Mimura, S. Matsuyama, H. Hara, K. Yamamura, Y. Sano, K. Ueno, et al., 2005, Fabrication of elliptically figured mirror for focusing hard x-rays to size less than 50nm, Rev. Sci. Instrum. 76(6): 63708. .

Zaitseva, Natalia P., et al., “Rapid Growth of Large-Scale (40-55 Cm) KDP Crystals,” vol. 3047, 1997, 404–14, doi:10.1117/12.294327.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

Zhang, D.F. Gardner, M.D. Seaberg, E.R. Shanblatt, H.C. Kapteyn, M.M. Murnane, and D.E. Adams, 2015, High contrast 3D imaging of surfaces near the wavelength limit using tabletop EUV ptychography, Ultramicroscopy 158: 98-104.

Zholents and G. Penn, 2005, Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser, Physical Review Special Topics - Accelerators and Beams 8(5): 050704.

Zhou, J. Peatross, M.M. Murnane, H.C. Kapteyn, and I.P. Christov, 1996, Enhanced high harmonic generation using 25 femtosecond laser pulses, Physical Review Letters 76(5): 752-755.

Zhou, J. Ruppe, C. Zhu, I-Ning Hu, J. Nees, and A. Galvanauskas, 2015, Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers, Opt. Exp. 23 7442.

Zou, C. Le Blanc, D.N. Papadopoulos, G. Chériaux, P. Georges, G. Mennerat, F. Druon, et al., 2015, Design and current progress of the Apollon 10 PW project, High Power Laser Science and Engineering 3: e2.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×

This page intentionally left blank.

Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 303
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 304
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 305
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 306
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 307
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 308
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 309
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 310
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 311
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 312
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 313
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 314
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 315
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 316
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 317
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 318
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 319
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 320
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 321
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 322
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 323
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 324
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 325
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 326
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 327
Suggested Citation:"Appendix F: Bibliography of Sources." National Academies of Sciences, Engineering, and Medicine. 2018. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light. Washington, DC: The National Academies Press. doi: 10.17226/24939.
×
Page 328
Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light Get This Book
×
Buy Paperback | $150.00 Buy Ebook | $119.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The laser has revolutionized many areas of science and society, providing bright and versatile light sources that transform the ways we investigate science and enables trillions of dollars of commerce. Now a second laser revolution is underway with pulsed petawatt-class lasers (1 petawatt: 1 million billion watts) that deliver nearly 100 times the total world’s power concentrated into a pulse that lasts less than one-trillionth of a second. Such light sources create unique, extreme laboratory conditions that can accelerate and collide intense beams of elementary particles, drive nuclear reactions, heat matter to conditions found in stars, or even create matter out of the empty vacuum.

These powerful lasers came largely from U.S. engineering, and the science and technology opportunities they enable were discussed in several previous National Academies’ reports. Based on these advances, the principal research funding agencies in Europe and Asia began in the last decade to invest heavily in new facilities that will employ these high-intensity lasers for fundamental and applied science. No similar programs exist in the United States. Opportunities in Intense Ultrafast Lasers assesses the opportunities and recommends a path forward for possible U.S. investments in this area of science.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!