National Academies Press: OpenBook

Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance (2019)

Chapter: 5 Improving the Stability Regulations Outside of Subchapter S

« Previous: 4 Methodology for Evaluating Effectiveness of Current Stability Regulations
Page 39
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 39
Page 40
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 40
Page 41
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 41
Page 42
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 42
Page 43
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 43
Page 44
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 44
Page 45
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 45
Page 46
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 46
Page 47
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 47
Page 48
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 48
Page 49
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 49
Page 50
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 50
Page 51
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 51
Page 52
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 52
Page 53
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 53
Page 54
Suggested Citation:"5 Improving the Stability Regulations Outside of Subchapter S." National Academies of Sciences, Engineering, and Medicine. 2019. Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. Washington, DC: The National Academies Press. doi: 10.17226/25565.
×
Page 54

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

PREPUBLICATION COPY—Uncorrected Proofs 39 5 Improving the Stability Regulations Outside of Subchapter S The U.S. Coast Guard (USCG) asked the committee to review ship stability regulations that exist outside of 46 Code of Federal Regulations (CFR) Subchapter S, to include 46 CFR Subchapters C and T, to determine if the standards reflect the current best practices for the vessels covered and if they warrant any clarifications, changes, or additions. In elaborating on the study charge, the USCG asked the committee to focus on the portion of the U.S. fleet operating inward of the Boundary Lines,39 which consists of smaller vessels in domestic service only, and not vessels that are internationally certified, ocean-going, and in coastwise service (as the latter operate outward of the Boundary Lines while traveling along the coast). Later it was decided—with USCG concurrence—that because the USCG is currently under a notice of proposed rulemaking (NPRM) of the Subchapter C stability regulations that apply to certain fishing vessels, the committee would not review those regulations as part of this effort.40 This chapter begins with a short section that notes some places where specific Subchapter T stability requirements could be clarified. The remaining focus of the chapter is on areas where the Subchapter T requirements could potentially be supplemented by other standards, particularly to address concerns about flooding of smaller passenger vessels. According to USCG statistics, flooding accounted for almost 12% (or 66 cases) of the 562 reported marine casualties in the passenger vessel fleet in 2017.41 “Flooding” was the third most common casualty for the passenger vessel fleet after “Material Failure/Malfunction” (23.5%) and “Loss/Reduction of Propulsion/Steering” (20.6%). It is notable that flooding was not among the three most common causes of casualties in other segments of the inspected fleet, including barge, cargo, outer continental shelf, research, school, and towing vessels. SUBCHAPTER T SIMPLIFIED STABILTY CLARIFICATIONS Vessels that meet certain characteristics (in 46 CFR 178.310, 178.320, and 178.325) may be certified using the simplified stability and subdivision criteria in Subchapter T. The simplified criteria are intended as an alternative to the Subchapter S requirements, which require sophisticated stability software, accurate vessel plans, and an inclining experiment or detailed deadweight survey. Set up as proof tests or simple empirical calculations, the simplified criteria are intended to be more conservative than corresponding criteria in Subchapter S, as noted in the USCG’s Marine Safety Manual, Volume 4.42 39 As discussed in Chapter 2, Boundary Lines mark the divide between inland and offshore waters and generally follows the high tide waterline. Inward of the Boundary Line is generally understood to mean partially protected and protected coastal and inland waters (see 46 CFR, part 7). 40 See https://www.federalregister.gov/documents/2016/06/21/2016-14399/commercial-fishing-vessels- implementation-of-2010-and-2012-legislation. 41 In 2017, “Flooding” accounted for 11.8% of all reported marine casualties in the fleet. See Figure 10 on p. 6: https://www.dco.uscg.mil/Portals/9/DCO%20Documents/5p/CG-5PC/CG- CVC/CVC1/AnnualRpt/2017DomesticAnnualReport.pdf. 42 See Chapter 6, Section 6.E.9.c on pp. 6–69: https://media.defense.gov/2017/Mar/29/2001723819/-1/- 1/0/CIM_16000_9.PDF.

PREPUBLICATION COPY—Uncorrected Proofs 40 Vessels covered by Subchapter T are generally smaller mono-hull craft of similar proportions, sometimes adapted from other services, and for which detailed plans may not be available. As vessels became larger, more sophisticated, and more capable (but still admeasuring less than 100 gross register tons), they would need to comply with the stability and subdivision standards in Subchapter S. The “break points” between the two sets of standards are, in the committee’s view, adequately reasoned and appropriate. Table 5-1 identifies specific parts of Subchapter T that the committee believes warrant clarification. The candidate changes are intended to make the regulations easier to understand, but would not change them substantively. TABLE 5-1 Potential Options for Updating Subchapter T Stability and Subdivision Requirements Cite Topic Comment Candidate Change PART 178—INTACT STABILITY AND SEAWORTHINESS PART 178, Subpart A—General Provisions 178.115 Applicability to existing vessels Reviewed; no comment PART 178, Subpart B—Stability Instructions for Operating Personnel 178.210 Stability Information Reviewed; no comment 178.215 Weight of passengers and crew Current wording in paragraph (b) is unclear: “the owner of each vessel must provide the master with the total test weight. “Provide” could be taken to mean the owner must actually furnish test weights to the master. Consider changing the word “provide” to the word “inform.” … the owner of each vessel must inform provide the master of the total test weight. . 178.220 Stability booklet Reviewed; no comment 178.230 Stability letter or Certificate of Inspection stability details Reviewed; no comment PART 178, Subpart C—Intact Stability Standards 178.310 Intact stability requirements— general Reviewed; no comment 178.320 Intact stability requirements— nonsailing vessels Current wording in paragraph (a) is unclear about requirement for tri-hull vessels (tri-toons). In paragraph (a), consider adding subparagraph (3) to allow simplified stability test of tri-hull vessels (tri-toons).

PREPUBLICATION COPY—Uncorrected Proofs 41 Cite Topic Comment Candidate Change 178.325 Intact stability requirements— monohull sailing vessels Current wording in paragraph (a)(7) is unclear about the use of the word “greater.” Suggest changing the word “greater” to “longer” to avoid any ambiguity as to whether the regulation refers to width of the cockpit or its length. 178.330 Simplified stability proof test (SST) 1. Current wording in paragraph (a)(4)(iv) after “The vertical center” is unclear. 2. Also, in paragraph (d)(6), the regulation mentions “catamaran.” What about other multi-hull vessels? 1. Suggest adding “of gravity” after “The vertical center,” to read: “The vertical center of gravity for the total test weight must….” 2. Suggest adding “or tri-hull vessel,” to read: “On a non-sailing flush deck catamaran or tri-hull vessel that is propelled….“ 178.340 Stability standards for pontoon vessels on protected waters General Comment: the standards address longitudinal and transverse immersion separately, but could corner- crowding be considered? PART 178, Subpart D—Drainage of Weather Decks 178.410 Drainage of flush deck vessels Reviewed; no comment 178.420 Drainage of cockpit vessels Reviewed; no comment 178.430 Drainage of well deck vessels Reviewed; no comment 178.440 Drainage of open boats Reviewed; no comment 178.450 Calculation of drainage area for cockpit and well deck vessels Reviewed; no comment PART 178, Subpart E—Special Installations 178.510 Ballast Reviewed; no comment PART 179—SUBDIVISION, DAMAGE STABILITY AND WATERTIGHT INTEGRITY PART 179, Subpart A–General Provisions 179.15 Incorporation by reference Reviewed; no comment 179.115 Applicability to existing vessels Reviewed; no comment PART 179, Subpart B—Subdivision and Damage Stability Requirements 179.210 Collision bulkheads Reviewed; no comment

PREPUBLICATION COPY—Uncorrected Proofs 42 Cite Topic Comment Candidate Change 179.212 Watertight bulkheads for subdivision and damage stability Guidance about potential openings for propulsion components is unclear or lacking. Add provision for watertight bulkheads around potential openings for propulsion components. 179.220 Location of watertight bulkheads for subdivision Reviewed; no comment 179.240 Foam flotation material 1. Believe in paragraph (b)(8), the intended word was “of” rather than “or.” 2. Text in this paragraph is unclear about foam used for bottom flotation and buoyancy or fender collars around rigid- inflatable boat (RIB) craft. 1. Suggest the second sentence read: The effective buoyancy of 881 kilograms per cubic…” rather than “or 881 kilograms per cubic….” 2. Clarify paragraph to include foam used for bottom flotation and buoyancy or fender collars around RIB craft. 179.310 Collision bulkheads Reviewed; no comment 179.320 Watertight bulkheads Reviewed; no comment 179.330 Watertight doors Reviewed; no comment 179.340 Trunks Reviewed; no comment 179.350 Openings in the side of a vessel below the bulkhead or weather deck. Reviewed; no comment 179.360 Watertight integrity Reviewed; no comment POTENTIAL SUPPLEMENTAL REQUIREMENTS As part of its review of the Subchapter T requirements, the committee examined requirements from other countries that apply to similar small passenger vessels. This review revealed several potential gaps or shortcomings in the existing Subchapter T requirements that apply to such vessels (open type or carrying not more than 49 day-service passengers). The gaps have to do with intact and damaged stability hazards unique to this vessel class, and include the absence of (1) a minimum required upright freeboard when a vessel is intact, (2) standards for survivability when a vessel is intact but in swamped condition, and (3) standards for survivability when a hull is penetrated or a seawater connection is breached. Finally, consideration is given to the need for more USCG guidance on dynamic instabilities of high-speed craft not covered by current regulations. In considering potential supplemental requirements, the committee researched existing intact and damaged stability standards for small passenger vessels in other countries. The primary purpose of doing so was to identify additional stability standards required for these types of vessels that are not currently required by Subchapter T. The cited stability standards are

PREPUBLICATION COPY—Uncorrected Proofs 43 illustrative. Other international standards are available to the USCG as models, such as ISO 12217, which provides methods to evaluate intact stability for nonsailing boats and sailing boats of hull lengths greater than or equal to 6 m.43 Although not considered here, it might be advisable for the USCG to understand the format and technical aspects of the stability standards of other countries when developing any new standards. In doing so, the USCG might want to consider whether the standards are applicable to a vessel (such as minimum or maximum lengths, defined operating areas or sea states, or number of passengers on board) and whether they are prescriptive (i.e. specified minimum freeboard values or a minimum range of positive stability) or performance-based (i.e., required to survive a given sea state). Minimum Required Upright Freeboard A vessel’s freeboard is the vertical distance between the waterline and the freeboard deck, which is “normally the uppermost complete deck exposed to weather and sea, which has permanent means of closing all openings in the weather part thereof.”44 While there are many technicalities to this definition for vessels with nonstandard freeboard deck configurations, these do not change the basic meaning of freeboard. Currently there are no absolute minimum upright freeboard requirements for small passenger vessels subject to Subchapter T. However, there are three intact stability standards that are freeboard-based and applicable to these vessels: (1) the SST (see 46 CFR 178.330), (2) the weather criteria (46 CFR 170.170), and (3) the passenger heel criteria (46 CFR 171.050). The SST only specifies that the upright freeboard cannot be immersed by an amount based on the type of vessel (e.g., open, cockpit, decked) when heeled by either a passenger or wind-heeling moment. The SST does not specify what the minimum upright freeboard should be, apart from the requirement that it not be immersed. The alternative intact stability criteria and the weather and passenger heel criteria also specify that the upright freeboard cannot be immersed beyond a certain distance when heeled by either a passenger or wind-heeling moment. These criteria also have a specified maximum heel angle that cannot be exceeded. None of the standards and criteria, however, is specific in identifying an absolute minimum freeboard in any condition for the small passenger vessels. Although there are some requirements for minimum freeboard to the deck in well deck and cockpit vessels in Subchapter T, 178.420 (drainage of cockpit vessels) and 178.430 (drainage of well deck vessels), these requirements are not absolute in specifying a minimum required freeboard for all circumstances. For example, the cockpit deck of such vessels operating on protected waters must be above the deepest load waterline. For cockpit vessels operating on partially protected or exposed waters, there is a minimum cockpit deck freeboard requirement of 10 inches unless the vessel meets certain Subchapter S requirements, in which case this distance can be lower. In all cases, there is no minimum freeboard requirement for the vessel’s gunwale or deck at edge, which is important for keeping boarding seas out of the vessel. Because of the format of the Subchapter T stability regulations, the freeboard of passenger vessels—particularly smaller passenger vessels not longer than 65 ft and operating in protected or partially protected waters—tends to be proportional to the length of the vessel; that is, the smaller the vessel, the lower the freeboard and the larger the vessel, the higher the freeboard. Although the vessels have adequate intact stability for the expected maximum passenger and wind-heeling moments and “normal” sea conditions, smaller vessels may not have 43 For example, Transport Canada currently requires power-driven passenger vessels of more than 6 m and less than 15 gross tons and carrying 12 or fewer passengers to comply with the requirements of ISO 12217 Part 1. 44 46 CFR Part 42.13-15(i).

PREPUBLICATION COPY—Uncorrected Proofs 44 adequate protection against potential unexpected boarding seas or large wakes from larger vessels operating nearby. The absence of a minimum upright freeboard that takes into account a wider variety of sea conditions can be problematic. Although the simplified stability test and weather criteria are directly proportional to vessel size with respect to passenger and wind heeling, the seas encountered by a passenger vessel are based on the wind and wave conditions in a particular location and not directly proportional to vessel size. Minimum freeboard requirements for small passenger vessels can be found in the standards and regulations of other countries; examples are provided in Box 5-1. The purpose of these requirements is to provide a minimum level of protection against unexpected boarding seas that could be experienced on the waters where the vessel normally operates, including protection against wakes from larger vessels operating nearby in congested areas. BOX 5-1 Examples from the Regulations of Other Countries of Minimum Required Freeboards Australian National Standards for Commercial Vessels Part C Section 6 Subsection 6A - Intact Stability Requirements Regulation 7.3.3.2.2 - Specifies a minimum freeboard to the lowest weathertight deck for passenger vessels based on the vessel’s length. The minimum required freeboards range from 150 mm (6 in) for vessels of 6 m (20 ft) or less to 250 mm (10 in) for vessels over 10 m (32 ft). Part C Section 6 Subsection 6B - Buoyancy and Stability After Flooding Specifies vessel use categories and operational areas Danish Maritime Authority Order No. 1012 Regulation 5 - Freeboard Conditions and Marking Part (5) specifies a minimum freeboard for passenger vessels exclusively operated in port areas or on lakes: for decked vessels, a freeboard of not less than 300 mm (12 in), and for open vessels, a freeboard of not less than 250 mm (10 in). Specifies operating areas for ports and lakes. Danish Maritime Authority Technical Regulation No. 2 Existing Passenger Ships Engaged on Domestic Voyages Part 2 Intact Stability - Section 4 Part (2) specifies each individual vessel shall have a minimum freeboard assigned by the Danish Maritime Authority “in consideration of the ship’s trade area.” Part (3) specifies a minimum freeboard in all cases of at least 0.15 m (6 in). Danish Maritime Authority Technical Regulation No. 10 Small Vessels Carrying a Maximum of Passenger Regulation 5 - Freeboard Conditions Part (1) specifies a minimum freeboard of at least 5% of the vessel’s breadth. An absolute minimum freeboard of least 0.20 m (8 in) with a minimum of 0.30 m (12 in) for vessels trading in the Greenland area is also specified. Safety Code for Passenger Ships Operating Solely in United Kingdom (UK) Categorized Waters MSN 1823 (M)

PREPUBLICATION COPY—Uncorrected Proofs 45 Annex 7 - The Heeling Test and Freeboard Measurements Regulation 9 - Freeboard Measurements Part (9.1) specifies a minimum mean loaded freeboard to the deck edge at the side for passenger vessels based on the vessel’s length. The minimum required freeboards range from 380 mm (15 in) for vessels of 6 m (20 ft) or less to 760 mm (30 in) for vessels over 18.3 m (60 ft). Two important features of these regulations are that they (1) require a minimum freeboard measured to either the vessel’s deck edge at side or the lowest weathertight deck based on vessel type and (2) are based on the geographical area where the vessel will be operated. The reason for the first feature is that vessel design is relevant to the risk of casualty should seas board the vessel. Open vessels have the highest risk should this happen, whereas flush deck vessels with adequate deck drainage will have a lower risk and consequently can have a lower minimum freeboard. Cockpit, well deck, and open vessels need a minimum “height of side”45 to protect against boarding seas, while cockpit and well deck boats specify a minimum freeboard to the deck to protect against back flooding through deck drains and freeing ports. The second feature helps account for differences in risks associated with an operating area’s prevalent and extreme wave and wake conditions. It merits noting that Danish regulations refer to “trading area”; the Australian code specifies “operational area”; and the UK code discusses “categorised waters” as a way to mitigate known risks when addressing minimum freeboard requirements for some passenger vessels operating in different geographical areas. Swamped Vessel Survivability Small passenger vessels of the open type that carry not more than 49 passengers or that have relatively large cockpits or wells can be susceptible to swamping if exposed to large seas. For these vessels, there are currently no regulations in 46 CFR Subchapter T that provide for the survivability of the vessel if swamped. A concern is that such vessels may not remain afloat upright and would either capsize or sink and force the passengers and crew into the water. There are documented cases of small passenger vessels not having enough freeboard and being swamped or overwhelmed by larger than expected waves in what were considered to be sheltered waters (i.e., those designated as protected or partially protected by the local Officer in Charge, Marine Inspection (OCMI). A recent example is the swamping of the DUKW46 excursion vessel Stretch Duck 7 during a severe thunderstorm on Table Rock Lake, Missouri, on July 19, 2018, resulting in 17 fatalities. It merits noting that the USCG has swamping criteria for Rigid Hull Inflatables (RHI) and Rigid Hull Foam Collar (RHFC) vessels. These criteria are listed in Marine Technical Note (MTN) 01-08, “Marine Safety Center Review of Rigid Hull Inflatable and Rigid Hull Foam Collar Vessels.” This MTN provides USCG-accepted alternative design standards for RHI and RHFC vessels that are considered equivalent to certain regulatory requirements in Subchapter T and Subchapter S. The basic swamped criteria format is contained in Box 5-2. The intent of these standards is to have the swamped vessel remain afloat and upright and thus become the “life raft” 45 “Height of side” with respect to an open boat means the distance between the waterline and the lowest point of the gunwale. The clear height should be measured to the top of the gunwale or capping or to the top of the wash strake if one is fitted above the capping. 46 The letters DUKW originate from General Motors manufacturing code: D, Designed in 1942; U, Utility; K, All- wheel drive; W, Dual-tandem rear axles. See https://en.wikipedia.org/wiki/DUKW.

PREPUBLICATION COPY—Uncorrected Proofs 46 for the passengers and crew as opposed to depending solely on the use of life jackets or other lifesaving appliances because the vessel sank. BOX 5-2 Summary of Coast Guard Swamping Criteria for Rigid Hull Inflatables (RHI) and Rigid Hull Foam Collar (RHFC) Vessels Swamping Criteria: The following must be satisfied when an intact RHI becomes swamped, or partially swamped, in any condition of loading. a. The point of least freeboard must not submerge in the static condition; b. There should be no appreciable change in vessel heel; c. The range of positive stability beyond equilibrium must be at least 5 degrees for protected waters, 10 degrees for partially protected waters, and 15 degrees for exposed waters; d. There must be at least 2.82 foot degrees of righting energy from the equilibrium heel angle to the angle of vanishing stability; and e. The maximum righting arm must be at least 0.33 ft. SOURCe: Marine Technical Note (MTN) 01-08, “Marine Safety Center Review of Rigid Hull Inflatable and Rigid Hull Foam Collar Vessels.” Here again, standards and regulations of other developed countries contain minimum survivability requirements for small passenger vessels when swamped. Examples are provided in Box 5-3. BOX 5-3 Examples of Minimum Survivability Requirements for Small Passenger Vessels from Other Countries Australian National Standards for Commercial Vessels Part C Section 6 Subsection 6B - Buoyancy and Stability After Flooding Chapter 4 - Measures to Control Consequences of Swamping Regulation 4.2.1 - Defines the classes of passenger vessel considered to be at “risk of swamping.” In general, they are vessels of less than 6 m (20 ft) and those vessels between 6 m (20 ft) and 24 m (79 ft) with a “flooding risk category” of II. Regulation 4.4.1 - Specifies the “deemed-to-satisfy” solutions to control the consequences of swamping. The acceptable deemed-to-satisfy solutions are based on whether it is a “seagoing” vessel or one operating on “sheltered water,” as well as to what “flooding risk category” it falls in. In general, there are two solutions: “basic flotation” and “level flotation.” Transport Canada Marine Safety TP 11717 Standards for the Construction and Inspection of Small Passenger Vessels

PREPUBLICATION COPY—Uncorrected Proofs 47 Standard 6.4.2 provides minimum stability standards when in the defined swamped condition of a metacentric height of at least 0.05 m (2 in) and a minimum freeboard of 150 mm (6 in) to the top of any wells or cockpits. Transport Canada Marine Safety TP 10/2007 Passenger Vessel Operations and Damaged Stability Standards (Non-Convention Vessels) Part II - Damaged Stability Part (6) provides minimum stability standards when in the defined swamped condition of a metacentric height of at least 0.05 m (2 in) and a minimum freeboard of 150 mm (6 in) to the top of any wells or cockpits. Swamped vessel survivability standards can apply to (1) open type vessels that have no self-drainage capability and that are subject to permanent flooding and (2) cockpit and well deck- type vessels that have large spaces that can be temporarily flooded. Although cockpit and well deck-type small passenger vessels might seem to present less risk from swamping than open passenger vessels due to their self-draining watertight decks, they are just as likely to be swamped as an open boat, at least for a short time until the water drains. Because of their drainage capability, the former vessels are assumed to have the ability to self-recover from a swamped condition. While such a recovery may be expected for minor flooding conditions, a major swamping event could have just as dramatic an initial impact on a cockpit or well deck- type passenger boat as an open boat. As discussed next, the standards for each vessel type can differ somewhat to reflect the permanent flooded condition that open boats will experience as opposed to the temporary flooded condition that will be experienced by cockpit and well deck- type boats. Swamped Survivability from Permanent Flooding of Open Passenger Vessels For the open type small passenger vessels, swamped survivability standards would need to achieve the following goals. 1. The vessel will remain upright with sufficient residual stability to meet either a. A specified GM or b. The heeling moment from passengers hanging on one side of the vessel’s gunwale. c. The heeling moment from large canopies and windbreaks if present. 2. The vessel will have a minimum residual freeboard at any location along its length. The intent of goal 1.a is to provide some measure of stability to counter the sea and wind conditions and to keep the vessel upright and usable as a life raft until rescue. Since the vessel is now swamped and the passengers are no longer contributing a significant load (they are mostly supported by their own buoyancy), only a fraction of the vessel’s original stability is likely required. The intent of goal 1.b is to account for two possible scenarios that are likely to occur during a swamping or after a swamping has occurred. One scenario is that some of the passengers are washed overboard during the swamping and are either attempting to get back into the swamped vessel or are clinging to a side of the vessel awaiting rescue. The other scenario is

PREPUBLICATION COPY—Uncorrected Proofs 48 that some of the passengers are abandoning the vessel after the swamping and swimming to nearby vessels or to shore. Goal 1.c applies to small open passenger vessels whose canopies and windbreaks remain above the swamped waterline, presenting significant wind area. The objective in this case is to keep passengers and crew from becoming trapped under the canopy or windbreaks. The intent of Goal 2 is to minimize the shipping of additional water into the passenger space and to provide some measure of protection for the passengers against boarding seas while they await rescue. Swamped Survivability from Temporary Flooding of Cockpit and Well Deck Passenger Vessels Swamped survivability standards for cockpit and well deck passenger vessel types would therefore want to achieve the following goals similar to those of the open boat swamped survivability standards, including 1. The vessel will remain upright with sufficient residual stability to meet either a. A specified minimum GM or b. The heeling moment from large canopies and windbreaks if present. 2. The vessel will have a minimum residual freeboard at any location along its length. The survivability standard’s values could also be adjusted to reflect the effectiveness of the vessel’s self-draining capabilities. Those vessels with more effective drainage will spend less time with their stability compromised and consequently could have lower standards for goals 1.a and 1.b. It may not be advisable for Goal 2’s minimum freeboard to be relaxed in this instance to minimize the recurrence of boarding sea swamping the vessel again while it is in an already partially swamped and thus vulnerable condition. Additionally, a requirement for the swamped vessel to survive with passengers clinging to one side is not needed for cockpit or well deck vessels due to the temporary nature of their swamping situation. Any passengers washed overboard during the initial swamping will be recovered after the vessel has drained at least partially and recovered a significant portion of its preswamped initial stability levels. In addition, because this class of cockpit and well deck vessels is self-rescuing, no transfer of passengers to another vessel would be necessary while the vessel is in the temporary swamped condition. Combining the Minimum Freeboard and Swamped Vessel Survivability Standards Minimum required freeboard and swamped condition standards work together to prevent a stability failure when operating in large seas. The difference between the two is that one is proactive and the other is reactive. The minimum required freeboard provides safety by minimizing the chance of a boarding sea occurring in the first place, while the swamped survivability standard would provide a measure of safety after a boarding sea has occurred. Because of this interrelationship, a connection between the standards’ prescriptions would seem to be beneficial. For cases where an open boat is operating on a large lake, it might be appropriate for the open boat to be able to survive when the boat is completely full of water as the water cannot drain out of this type of open vessel and successive boarding waves will potentially flood the vessel fully. However, if the vessel’s freeboard was higher than the required minimum, then it may also be appropriate for some relaxation in the assumed swamped condition. Since the vessel has the higher freeboard, the chance of a boarding wave is less and the amount of water boarding

PREPUBLICATION COPY—Uncorrected Proofs 49 would also be reduced. Consequently, it may be appropriate to reduce the amount of water assumed trapped in the vessel when assessing the vessel’s swamped survivability, such as by assuming the vessel is only half full of water. Survivability from a Hull Penetration and Seawater Connection Breach Small passenger vessels certified under Subchapter T that are less than 65 ft in length, carry not more than 49 passengers, and operate on protected or partially protected waters do not have to meet subdivision requirements (with a few exceptions) (46 CFR 179.212). As previously noted, in 2017 flooding accounted for almost 12% of reported marine casualties in the U.S.-inspected passenger vessel fleet.47 Thus, if the vessel’s underwater hull watertight integrity is breached in any manner, there are no requirements in place to prevent the vessel from sinking. The only exceptions are for wood vessels constructed after March 10, 2001, that are operated on cold waters. The potential causes of damage to a small passenger vessel’s watertight integrity are limited. The four main causes of damage for all kinds of vessels are: 1. Failure of a seawater hull connection or failure of a pipe passing through a space that is connected to the sea. 2. Failure of the hull’s watertight envelope, such as a plate seam splitting or a wood plank coming loose. 3. Grounding of the vessel on the sea bottom, which breaches the vessel’s hull. 4. Collision with another vessel that breaches the vessel’s hull. However, the likelihood of the last three causes occurring among small passenger vessels is reduced due to their unique design and operating profiles. The hull structural integrity is robust (the vessels are regularly hauled using a travel lift) and inspected on a regular basis, so hull failure is unlikely. Grounding is also unlikely, as this type of small passenger vessel is typically operated in a given area in which hazards are well known to the captains. Collisions are also unlikely, as small passenger vessels generally operate in good weather conditions and the vessels are highly maneuverable. Even if a collision were to occur, small passenger vessels with their robust hull structures can readily bounce off with no damage to their watertight integrity. However, the first of these potential causes of a vessel’s loss of watertight integrity, failure of a seawater connection or seawater pipe, has more relevance to small passenger vessels due to the large number of seawater connection points that can be found on such vessels. These connections include • Seawater supply for fire pumps. • Seawater cooling water supply for main engines, generators, and air conditioning units. • Seawater supply for deck washdown. • Propeller shaft seals or stuffing boxes. • Rudder stock seals or stuffing boxes. • Stern drive and sail drive sealing boots. • Nonintegral engine and air conditioning keel coolers. • Depth sounders and fish locating sonar transducers. 47 See Figure 10 on p. 6: https://www.dco.uscg.mil/Portals/9/DCO%20Documents/5p/CG-5PC/CG- CVC/CVC1/AnnualRpt/2017DomesticAnnualReport.pdf.

PREPUBLICATION COPY—Uncorrected Proofs 50 • Stabilizer fins. • Retractable or movable keels on sailboats. Due in part to the corrosive nature of seawater, potential failures of these connections can arise from conditions such as seawater pipe hull connection fractures, internal wastage of the pipes and fittings, and degradation of flexible hoses and hose connections. For example, a typical main engine with a seawater-cooled heat exchanger and water-cooled exhaust would have the following potential failure points: • Seachest or seawater pipe hull connection. • Seacock or seachest valve (corrosion from dissimilar metals). • Piping lines, fittings, and valves to the engine. • Flexible hose connection to the engine-driven pump. • Multiple flexible hose connections on the engine between the pump, cooler, and exhaust water discharge riser. • Flexible hose connections on the exhaust line after the discharge riser. Propeller shaft and rudder stock penetrations for small passenger vessels are also “seawater connections.” These components typically consist of a stuffing box or dripless mechanical seal connected with a rubber flexible hose to the vessel’s stern or rudder tube. As with the seawater supply connections, there are multiple failure points in each one of these propeller shaft or rudder stock hull penetrations. Starting from the seawater side, the potential failure points could be failure of the stern or rudder tubes from internal corrosion, the flexible hose from normal degradation of the hose over time, and the flexible hose securing clamps from corrosion or becoming loose. Additionally, small passenger vessels may employ “stern-,” “sail-,” or more recently “pod-” drives, which depend on a flexible seal, or “boot,” between the inboard engine and the external propulsor. As with a propeller shaft or rudder stock penetration failure, the failure of a stern drive boot can create a large opening in the vessel’s watertight envelope for which there is currently no required means to isolate the failure point to prevent the loss of the vessel. A failure of any one of these seawater connections can create an unmanageable flooding situation in a small passenger vessel. Although the USCG has requirements for seacocks or seachest shutoff valves on all sea connections, on small vessels these devices are often hidden or not in readily accessible locations; susceptible to corrosion from dissimilar metals, and (like most sea valves) not exercised on a regular basis. As a result, the seacock or shutoff valve may not be able to be closed when needed in an emergency. Likewise, USCG requirements for bilge pumps on small passenger vessels can have limited effect on keeping a vessel afloat from a watertight hull integrity failure because they are designed mainly for draining incidental water accumulation rather than breaches in the vessel’s watertight integrity.48 Box 5-4 gives some examples of minimum survivability requirements in other developed countries’ standards and regulations for small passenger vessels when subject to the kinds of hull envelope watertight failures previously discussed. A primary aim of such standards is to control 48 46 CFR 182.520 requires that vessels 26 to 65 ft long and that carry not more than 49 passengers either (1) have a fixed power bilge pump (10 gallons per minute (GPM)) and (2) portable hand pump (10 GPM) or (1) fixed hand bilge pump (10 GPM) and (2) portable hand pump (5 GPM). Vessels under 26 ft are only required to have a portable hand pump (5 GPM). A 1-in diameter hole submerged 2 ft below the waterline will allow an inflow of approximately 27 GPM.

PREPUBLICATION COPY—Uncorrected Proofs 51 the consequences of local flooding and allow the vessel to remain afloat and upright with adequate stability while awaiting rescue. BOX 5-4 Examples of Minimum Survivability Requirements from Other Countries’ Regulations for Small Passenger Vessels That Apply to Hull Envelope Watertight Failures Australian National Standards for Commercial Vessels Part C Section 6 Subsection 6B - Buoyancy and Stability After Flooding Chapter 5 - Measures to Control Consequences of Local Flooding Part 5.1 defines the sources of local flooding to include “sea water systems, skin fittings, holes in the shell due to corrosion, rot or leaking caulking, shaft seals, shaft failures, leakage through closing appliances, and structural failures.” Part 5.4 requires that “a space containing seawater systems, stern glands, rudder stock penetrations, thrusters, canting or retractable keels shall be separated from other spaces in the vessel by watertight boundaries.” Safety Code for Passenger Ships Operating Solely in UK Categorized Waters MSN 1823 (M) Regulation 6.1 - Watertight Subdivision Part 6.1.2 requires “the stern gland of every such ship shall be situated in a watertight shaft tunnel or other watertight space.” While the committee is not in a position to give specific guidance on how the USCG might design such standards, the focus would presumably be on requiring local watertight compartments or partial subdivision of a vessel’s hull. For example, such local subdivision requirements might target: • Propeller shaft and rudder stock penetrations: They could either be located in small watertight compartments or be contained inside longitudinal and/or transverse watertight bulkheads. The bulkheads would only need to be high enough to contain the potential flooding of the local space containing the hull penetration under normal operating drafts and trims with a small margin. Alternatively, rudder tubes could be extended so the gland or seal is above the waterline. • Seawater cooled engines: In this situation the engine could be contained inside longitudinal and/or transverse watertight bulkheads high enough to contain the potential flooding of the local space containing the engine(s) under normal operating drafts and trims with a small margin. • Stern drive propulsion units: The inboard side of the stern drive system could be located in a small watertight compartment at the transom of the vessel. The compartment would be sized so that under flooding conditions the vessel has adequate minimum freeboards and stability levels to remain afloat and upright. • Water jet drives: Water jet intake ducts, impeller housings, and other inboard- mounted components, if not integral with and of the same or heavier construction as

PREPUBLICATION COPY—Uncorrected Proofs 52 the surrounding hull, could be enclosed by watertight bulkheads so that a breach of the housing will not flood the hull of the vessel. It is important to emphasize that these candidate solutions are offered only as examples for the USCG to consider. The committee was not able to examine each in depth. A Note About Dynamic Instabilities of High-Speed Craft High-speed, dynamically supported craft, such as air-cushion vehicles and hydrofoil boats, have been shown to exhibit various types of instabilities (see Cohen and Blount 1988, Table 1) that are not currently addressed in USCG regulations. Considered a function of speed, these instabilities are influenced by hydrodynamic pressures dominating the hydrostatic pressure (Codega 1994) and are not completely understood using a simplified zero speed hydrostatic analysis. The instabilities have been shown to exist in calm water and may be amplified in the presence of waves (Troesch and Falzarano 1992). The dynamic stability of high-speed craft can be studied in the design phase using theoretical and numerical analysis methods or systematic physical model testing, but must be verified with full-scale trials guided by an understanding of the important variables that affect the phenomenon. If detected, an instability can be corrected using various methods (see Codega and Lewis 1987), but can only be avoided by operational limits as a last resort. Also understood is that these phenomena are affected by changing the loading and powering, or by operating the vessel in waves. Vessels that are marginally stable in calm water at low speed may become unstable at higher speed and in waves. Hard chine monohull planing hulls are the most common type of high-speed craft, but other vessel hull types exist (e.g., multihull vessels, round bottom high-speed vessels, Small Waterplane Area Twin Hulls (SWATH), hydrofoil, and air cushion vehicles), each exhibiting their own type of instability. The IMO High Speed Craft Code (HSC) (IMO 2000) describes many of these stability issues and illustrates that other methods of demonstrating compliance with the requirements may be accepted, if the method chosen is shown to deliver an equivalent level of safety. Methods may include mathematical simulation of dynamic behavior, scale model testing, or full-scale trials. In addition, the IMO HSC lists 10 types of known stability hazards experienced by high-speed craft that should be verified by model or full-scale tests and/or calculations (see IMO 2000, p. 27). Vessels require such calculations and/or tests to demonstrate that they will return to an original state after a disturbance by one or more of the known stability hazards listed in the HSC. SUMMARY At the request of the USCG, the committee reviewed the current intact and damaged stability standards in Subchapter T (Part 178 Intact, Part 179 Subdivision) to determine if the standards reflect the current best practices for the vessels covered and if they require changes or additions. In general, the committee found the existing Subchapter T standards reflect the current best practices for the domestic passenger vessels covered, and that the transition between when a vessel can use the simplified intact stability tests and the simplified subdivision calculations (as opposed to the stability standards in 46 CFR Subchapter S) is adequately reasoned. The committee did find instances in which the current regulations could be updated to improve clarity (as outlined in Table 5-1) and where they might benefit from some supplemental requirements. Informed by the discussions in this chapter, the USCG may want to consider whether it is desirable to add stability standards for some of the smaller passenger vessels to

PREPUBLICATION COPY—Uncorrected Proofs 53 address stability hazards unique to these vessels. The additions could address minimum required freeboards to protect against boarding seas, survivability in a swamped condition, and local subdivision in the event of a seawater connection failure. In particular, candidate vessel types for such standards are those that have open, well, or large cockpit designs and those carrying not more than 49 passengers that have no subdivision requirements. Although the committee had limited time to discuss all other vessel types that may be candidates for supplements to existing stability regulation, it merits noting that high-speed, dynamically supported craft can exhibit instabilities that are not currently addressed in existing stability regulations. Accordingly, this too is an area for which USCG could aim to provide guidance. REFERENCES Abbreviations IMO International Maritime Organization IMO MSC International Maritime Organization Maritime Safety Committee Codega, L. The Dynamic Stability of High Speed Craft, Professional Boat Builder, October- November 1994. Codega, L. and J. Lewis. 1987. Case Study of Dynamic Instability in a Planing Hull, Marine Technology Society Journal 24(2):143–163. Cohen, S. and D. Blount. Research Plan for the Investigation of Dynamic Instability ofSmall High-Speed Craft, Transactions of Society of Naval Architects and Marine Engineers,1988. IMO RESOLUTION MSC.97(73) (adopted on December 5, 2000), Adoption of the International Code of Safety for High-Speed Craft, 2000 (2000 HSC Code). Troesch, A. and J. Falzarano. Modern Nonlinear Dynamical Analysis of Vertical PlaneMotion of Planing Hulls, Journal of Ship Research, 1992.

PREPUBLICATION COPY—Uncorrected Proofs 54

Next: 6 Review of U.S. Coast Guard Policy and Guidance Documents »
Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

U.S. Coast Guard (USCG) ship stability regulations governing the ability of a vessel to return to an upright position after being disturbed is the focus of a new TRB publication, Review and Update of U.S. Coast Guard Vessel Stability Regulations and Guidance. The authors advise the USCG on how it can make its stability regulations more usable and complete in meeting the requirements of different types of vessels and those vessels that have undergone weight changes that can affect their stability characteristics.

The USCG has safety regulatory jurisdiction over vessels registered in the United States. One of its oldest regulatory functions is to ensure these ships, boats, and other floating vessels remain upright as they encounter both expected and unexpected loading, operating, and weather conditions, including wind and wave conditions and unexpected failure of watertight integrity.

Stability standards have been improved over time - particularly in the past 30 years - and the USCG remains keenly interested in making sure the regulations are kept updated based on the latest technical knowledge, well aligned with international standards, and organized and presented in a manner that facilitates compliance and enforcement. The recommendations in the report are intended to further these aims. The USCG earlier commissioned a National Academies study to identify options for improving vessel stability regulations, and after receiving that study in September 2018, the USCG asked for this second study to provide more in-depth advice on applying these options.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!