National Academies Press: OpenBook

Oceanography in 2025: Proceedings of a Workshop (2009)

Chapter: Physical Oceanography in 2025--Chris Garrett

« Previous: Oceanography in 2025--Walter Munk
Suggested Citation:"Physical Oceanography in 2025--Chris Garrett." National Research Council. 2009. Oceanography in 2025: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12627.
Page 65
Suggested Citation:"Physical Oceanography in 2025--Chris Garrett." National Research Council. 2009. Oceanography in 2025: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12627.
Page 66
Suggested Citation:"Physical Oceanography in 2025--Chris Garrett." National Research Council. 2009. Oceanography in 2025: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12627.
Page 67

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Physical Oceanography in 2025 Chris Garrett* Physical oceanography will continue to advance using new observa- tions and more powerful computers. It will contribute increasingly to interdisciplinary problems. Based on my own narrow experience and prejudices, I have three main recommendations. These are that we: • Devote more attention to practical issues that fall somewhere in the middle ground between physical oceanography and ocean engineering. • Continue to recognize the value of simple models. • Consider seriously the education and recruitment of our successors. The present state of the world is one of the reasons for suggesting more attention to practical problems. It could even be argued that we are in a situation similar to that of 1941, facing serious threats that demand the focused attention of the scientific community. Many of today's threats are aspects of rapid global change, with some of them being associated with the by-products of human energy consumption. The oceanographic community is currently devoting considerable attention to research aimed at improving predictions of the future climate. This is admirable, but I suggest that (i) these predictions will remain sensi- tive to small scale processes that we will never be able to understand and * University of Victoria 65

66 OCEANOGRAPHY IN 2025 parameterize precisely, so that our efforts will lead merely to a reduction in the error bars on our predictions, and (ii) there is already enough evi- dence to suggest that the probability of unacceptable climate change is high enough to warrant drastic changes in human activities. It can thus be argued that major attention to such things as non- greenhouse gas emitting energy sources is warranted. If these are not found and adopted, then attention must also be paid to adaptation, par- ticularly to things like rising sea level. In both of these areas there will be a need for our community to contribute at the interface between physical oceanography and engineering, and, of course, the members of our com- munity in 2025 will include people currently in the early stages of their education. I would like to give a simple personal example of an investigation in which the viewpoint of a physical oceanographer was brought to bear on a practical problem in renewable energy. The topic, while compara- tively trivial and unimportant, will also serve to illustrate my second point about the value of simple models. The topic is that of placing turbines in strong currents to generate electrical power. It turns out that, subject to a couple of reasonable approximations, there is a very simple general formula for the maximum available power, well supported by detailed numerical models and very different from the engineering for- mula in common use. An overview can be found in Garrett and Cum- mins (2008). The message of this example is that the appreciation of physical understanding and simple models is deeply rooted in the physical ocean- ographic community but not always so obvious in approaches to practical problems. I could provide several similar examples, as I'm sure many other physical oceanographers can. Our traditions need to be maintained and we need to be prepared to contribute more to practical issues where our approach is valuable and complements that of other communities. Overall, it probably takes physical oceanographers to point out that power from the ocean is unlikely to be globally significant. By “we,” I mean the physical oceanographic community. In 2025 it will no longer consist of the same individuals. Where will the new mem- bers of our community come from? Will they have the same strengths as us, and can we help them avoid any weaknesses from which we suffer? We could start with a questionnaire for those already in the field, with questions such as: • What was your educational background? • How did it prepare you a) well, and b) badly, for a career in physi- cal oceanography? • What attracted you into physical oceanography?

Chris Garrett 67 • How can we be sure that by 2025 we will have people entering our field who are even better prepared than we have been? In answering the last question, we need to recognize that someone who will graduate with a Ph.D. in 2025 is maybe in grade five now. How can we help to ensure that such a student will have an adequate school education in mathematics and science? What do we recommend for uni- versity study? I suspect that it is a strong physics background that we most appreciate and I am personally concerned by a) the diversion of good students into calculus-free university programs in environmental science, and b) the narrow-mindedness of most North American physics departments. We all need to work at our own, or affiliated, institutions to develop courses and programs that will attract students who are talented in math- ematics and physics but who want to find fields that are both intellectu- ally challenging and societally valuable. What could be better than “the physics of the environment”?! We can also benefit from exposure in semi- popular journals read by physics faculty and maybe undergraduates. Physics Today is one such journal, with frequent articles on our kind of physics and with several members of the editorial staff who are sympa- thetic. We need to cultivate them! Reference Garrett, C. and P. Cummins. 2008. Limits to Tidal Current Power. Renewable Energy. 33: 2485-2490.

Next: A Vision of Future Physical Oceanography Research--James J. O'Brien »
Oceanography in 2025: Proceedings of a Workshop Get This Book
Buy Paperback | $60.00 Buy Ebook | $47.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

On January 8 and 9, 2009, the Ocean Studies Board of the National Research Council, in response to a request from the Office of Naval Research, hosted the "Oceanography in 2025" workshop. The goal of the workshop was to bring together scientists, engineers, and technologists to explore future directions in oceanography, with an emphasis on physical processes. The focus centered on research and technology needs, trends, and barriers that may impact the field of oceanography over the next 16 years, and highlighted specific areas of interest: submesoscale processes, air-sea interactions, basic and applied research, instrumentation and vehicles, ocean infrastructure, and education.

To guide the white papers and drive discussions, four questions were posed to participants:

What research questions could be answered?

What will remain unanswered?

What new technologies could be developed?

How will research be conducted?

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook,'s online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!