National Academies Press: OpenBook

Oceanography in 2025: Proceedings of a Workshop (2009)

Chapter: Oceanography in 2025--Dana R. Yoerger

« Previous: Small Scale Ocean Dynamics in 2025--Jonathan Nash
Suggested Citation:"Oceanography in 2025--Dana R. Yoerger." National Research Council. 2009. Oceanography in 2025: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12627.
Page 146
Suggested Citation:"Oceanography in 2025--Dana R. Yoerger." National Research Council. 2009. Oceanography in 2025: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12627.
Page 147
Suggested Citation:"Oceanography in 2025--Dana R. Yoerger." National Research Council. 2009. Oceanography in 2025: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12627.
Page 148
Suggested Citation:"Oceanography in 2025--Dana R. Yoerger." National Research Council. 2009. Oceanography in 2025: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/12627.
Page 149

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Oceanography in 2025 Dana R. Yoerger* Underwater vehicles and related in situ sensors will advance signifi- cantly in the next 16 years in terms of operating range, endurance, and in the types of measurements they can make. By vehicles, I am referring to powered autonomous underwater vehicles, remotely operated vehicles, gliders, and floats. While AUVs are presently operational, the vehicles in everyday use today do not use their limited energy supplies to best effect, with the pos- sible exception of gliders. As a result their range and operating speeds are limited. Vehicle drag is often dominated by external appendages such as hydrophones, antennas, and recovery aids rather than the hull form itself. Significant gains in the practical efficiency of propulsors and significant reductions in “hotel” loads (control system, sensors, etc.) are also pos- sible. Many of these improvements can be obtained through hard-nosed, competent engineering rather than fundamental invention. AUV research and development groups around the world are actively involved in such developments, and we can expect that new or improved vehicles taking advantage of these efforts will be coming online in the next few years and will be very mature by 2025. A several-fold improvement in power consumption is nearly certain. In the next 16 years, our present energy sources (lithium primary cells, lithium-ion secondary cells, for example) will most likely be com- pletely surpassed by new developments. Possible near-term energy * Woods Hole Oceanographic Institution 146

Dana R. Yoerger 147 sources include lithium-seawater batteries and several types of fuel cells. These developments will be driven by applications outside oceanogra- phy. Our present battery technologies available for AUVs were driven by the needs of relatively small devices such as laptop computers and cell phones; the next generation of energy sources will be driven by the stor- age needs of systems with much larger energy requirements in response to larger societal needs such as distributed power generation (solar, wind, etc.) and electric vehicles. A developer of lithium-seawater batteries proj- ects nearly a factor of 10 increase in energy density over present lithium primary cells. These improvements would totally reshape our use of both powered AUVs as well as gliders, where the power needs of the sensor packages impose fundamental limitations. To take advantage of the combination of reduced power usage and increased energy supplies, the vehicles must be reliable, be able to local- ize their position without aid from a vessel or mission-specific seafloor beacons, and have sufficient intelligence to deal with unanticipated events during the mission. No doubt our capabilities in these areas will be sub- stantially improved by 2025. While methodological breakthroughs are likely, pragmatic engineering progress will allow consistent progress on all these fronts. These developments, properly assembled into well-designed opera- tional systems, will permit a revolutionary new approach to many ocean- ographic problems. The combination of improved power use and signifi- cantly improved energy sources can increase the present range of vehicles (presently on the order of 100s of km) many fold, perhaps by a factor of 20 to 50. Can we imagine how we would take advantage of an AUV with 5000 km range? In situ sensing technologies are on the brink of a revolution that can fundamentally change our understanding of a variety of important ocean processes. As an example, compact, low-powered mass spectrometers that can make laboratory-grade measurements even at great depth are coming online now. Likewise newly emerging in situ genomic sensors can assess the presence and even abundance of specific organisms. These powerful instruments can allow us to measure many quantities in situ for which we must presently secure samples for analysis in the laboratory. The change from laboratory analysis to in situ sensing not only dramatically lowers the cost per measurement, it also enables vastly improved spatial coverage as well as long-term time series observations that conventional sampling and laboratory analysis cannot possibly accommodate. AUVs with such capabilities will enable fundamentally new opera- tional paradigms. Present-day operational AUV costs are dominated by the cost of the vessel and the support personnel that must accompany the vehicle. But AUVs with reliable long range capabilities could operate with

148 OCEANOGRAPHY IN 2025 full autonomy provided other technical issues such as localization could be solved, greatly reducing costs since the vessel and support crew could go “off the clock” shortly after the vehicle is launched, either returning to port or go to work on a different task. The combination of increased range and new in situ sensors will allow spatial coverage and data densities unthinkable today. Likewise, multiple-vehicle operations using coopera- tive control schemes will further enable us to capture dynamic features over large areas. A recent paper by Davis and McGillicudy (2006) illustrates the power of in situ sensing operating on a submerged platform with long range. They towed the Video Plankton Recorder (VPR), an in situ microscope, behind a research vessel in an undulating pattern between the surface and 130 meters along a continuous track over 5500 km in length. The resulting images, classified using automated techniques amenable to on-vehicle processing, showed unexpected widespread populations of the N2-fixing colonial cyanobacterium Trichodesmium, leading to a fundamental revision of our understanding of nitrogen fixing in the world’s oceans and resolv- ing a conundrum that had not been resolved by conventional sampling methods. By 2025, we could have multiple long-range AUVs operating over such ranges in cooperating teams, each equipped with suites of in situ sensors such as the VPR, mass spectrometers, and a variety of genomic sensors. Such observations, combined with our improving ocean modeling capabilities, have the potential to fundamentally rewrite our understanding of many ocean processes. Remotely operated vehicles are likely to evolve significantly in the near future as well. Taking advantage of many AUV technologies, self- powered remotely operated vehicles communicating with light optical fiber tethers, acoustic communications, or optical links will enable direct human control or at least human supervision without the heavy cables required to transmit power. By eliminating heavy winches, these vehicles will be more portable, will be able to work from smaller vessels, and may not require dynamic positioning. These qualities will increase the pool of candidate vessels and make the new vehicles applicable to event response or for cruises that require intervention or sampling capabilities but don’t require a full ROV spread. Despite the advances with AUVs and gliders, our success will always depend on ships. Expanded AUVs equipped with new in situ sensors will not eliminate the need for sampling, and many types of sampling will remain in the domain of human-occupied vehicles, remotely oper- ated vehicles, and specialized facilities (such as the new long core system on Knorr) that require capable vessels. Many of these sampling efforts are crucial elements of programs where oceanography is most relevant to pressing societal needs such as understanding past and present cli-

Dana R. Yoerger 149 mate variability. Undoubtedly laboratory instrumentation will continue to evolve and the resulting capabilities will always exceed those of in situ sensors. For example, in situ mass spectrometers will enable many new types of investigations; but they will not have sufficient performance to replace accelerator mass spectrometer facilities to determine the ventila- tion age of seawater. AUV capabilities will certainly improve for some types of sampling, but for the foreseeable future the most demanding types of sampling (gathering hydrothermal fluids, retrieving fossil corals, or taking cores, for example) will require skilled human intervention. The role of our ships may change, as their capabilities as tenders for launching vehicles, floats, and gliders will become much more important. But new ships well matched to this role will certainly be required in my view. Reference Davis, C.S. and D.J. McGillicuddy, Jr. 2006. Transatlantic Abundance of the N 2-Fixing Colo- nial Cyanobacterium Trichodesmium. Science. 312:1517-1520.

Next: The Research Vessel Problem--J. N. Moum, Eric D'Asaro, Mary-Louise Timmermans, and Peter Niiler »
Oceanography in 2025: Proceedings of a Workshop Get This Book
Buy Paperback | $60.00 Buy Ebook | $47.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

On January 8 and 9, 2009, the Ocean Studies Board of the National Research Council, in response to a request from the Office of Naval Research, hosted the "Oceanography in 2025" workshop. The goal of the workshop was to bring together scientists, engineers, and technologists to explore future directions in oceanography, with an emphasis on physical processes. The focus centered on research and technology needs, trends, and barriers that may impact the field of oceanography over the next 16 years, and highlighted specific areas of interest: submesoscale processes, air-sea interactions, basic and applied research, instrumentation and vehicles, ocean infrastructure, and education.

To guide the white papers and drive discussions, four questions were posed to participants:

What research questions could be answered?

What will remain unanswered?

What new technologies could be developed?

How will research be conducted?

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook,'s online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!