National Academies Press: OpenBook

Guidelines for Traversability of Roadside Slopes (2019)

Chapter: Chapter 1 - Introduction

« Previous: Front Matter
Page 1
Suggested Citation:"Chapter 1 - Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. Guidelines for Traversability of Roadside Slopes. Washington, DC: The National Academies Press. doi: 10.17226/25539.
×
Page 1
Page 2
Suggested Citation:"Chapter 1 - Introduction." National Academies of Sciences, Engineering, and Medicine. 2019. Guidelines for Traversability of Roadside Slopes. Washington, DC: The National Academies Press. doi: 10.17226/25539.
×
Page 2

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

1 1.1 Research Statement Rollovers are the leading cause of fatalities in single-vehicle run-off-road (SVROR) crashes. Analysis of 6 years of data from the National Automotive Sampling System (NASS) Crash- worthiness Data System (CDS) indicates that 31 percent of SVROR crashes result in a rollover. Approximately 75 percent of these rollover crashes are initiated by vehicles digging into the ground on embankments or in ditches after encroaching onto the roadside. Higher centers of gravity make light trucks such as pickup trucks, utility vehicles, and vans inherently less stable than passenger cars. Numerous crash data studies have documented that light trucks are overrepresented in rollover crashes. For example, the analysis of the NASS CDS indicates the risk of a utility vehicle rolling over in a SVROR crash on a high-speed roadway is 2.2 times that of a passenger car. Sales of light trucks continue to increase each year. As a group, light truck sales currently outpace sales of passenger cars, accounting for over 50 percent of all new passenger vehicles sold. Thus, it is important to update roadside safety guidelines and practices to accommodate the current vehicle fleet. Due in part to a lack of roadside data in most crash databases, little information is available regarding the percentage of overturns versus total vehicle encroachments for different sideslope ratios. AASHTO’s Roadside Design Guide (2006) considers foreslope ratios ranging from 1V:3H up to 1V:4H to be traversable but non-recoverable. Slopes steeper than 1V:3H have historically been considered critical foreslopes. The Roadside Design Guide states that such slopes “will cause most vehicles to overturn and should be treated (i.e., flattened or shielded with a barrier) if they begin within the clear-zone distance of a particular highway. . . .” This guidance is based largely on studies that were conducted in the late 1960s and early 1970s and included only a very limited number of full-scale embankment tests and computer simulations with passenger cars. There is also a concern that some roadside slope conditions that have for many years been considered traversable for passenger cars may not be traversable for light trucks. With the steadily increasing percentage of light trucks in the vehicle fleet, further research is needed to determine what should be considered safe sideslope conditions for today’s vehicle fleet. Proper assessment of slope traversability will help reduce the number of rollover crashes and associated fatalities. 1.2 Research Objective The objective of this research was to develop guidelines for determining the traversability of roadside slopes considering the characteristics of the current passenger vehicle fleet. C H A P T E R 1 Introduction

2 Guidelines for Traversability of Roadside Slopes 1.3 Research Approach and Report Layout The objectives of this research were achieved by completing various tasks that are described in this report. Chapter 2 presents a detailed literature review that was conducted on the topic of slope traversability. It includes research studies related to the severity of slope crashes and safety risks associated with different slopes and vehicle characteristics. It also includes past and ongoing research that involves use of simulation for identifying or mitigating slope- related hazards. In Chapter 3, review and analyses of the Fatality Analysis Reporting System (FARS) and other existing databases are presented. These analyses were conducted to identify vehicle types most likely to roll over on slopes, which are also presented in this chapter. In Chapter 4, the researchers presented a comparison of the characteristics of the vehicle types identified after analysis of the FARS database. A comparison of the design vehicles specified in AASHTO’s Manual for Assessing Safety Hardware (MASH) is also presented in this chapter. In Chapter 5, the researchers have presented details of the simulation analyses performed to identify the traversability of various roadside slope configurations. This chapter presents the various tools that were used for the simulation analyses, details of the models used, some of the sensitivity studies performed for various parameters used in the analyses, and the results of the simulation analyses. One aspect of this project was to perform full-scale traversability tests and to compare the performance of the vehicles with the simulations performed for the same test conditions. Details of these tests and their comparison to the simulation analyses are presented in Chapter 6. In Chapter 7, the process of using the results of the simulations to arrive at the traversability guidelines is explained in detail. This chapter describes how simulation results were weighted according to the probability of their occurrence in the real world. Development of the final guidelines using the weighted simulation results is also presented in this chapter. The proposed traversability guidelines emanating from this research are presented in Chapter 8 as a standalone chapter. This chapter can be included in other documents to assist with the implementation of this research.

Next: Chapter 2 - Literature Review »
Guidelines for Traversability of Roadside Slopes Get This Book
×
 Guidelines for Traversability of Roadside Slopes
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Geometric design practitioners in state transportation agencies have a new set of guidelines on probability of vehicle rollover based on various roadside design features. NCHRP Research Report 911: Guidelines for Traversability of Roadside Slopes will assist practitioners in the reduction of serious injury crashes associated with rollovers on roadside slopes.

Data from the National Automotive Sampling System (NASS) Crashworthiness Data System (CDS) shows that one-third of single-vehicle run-off-road (SVROR) crashes result in rollovers—the leading cause of fatalities in SVROR crashes. Three-quarters of these rollover crashes involve vehicles digging into the ground on embankments or in ditches after encroaching onto the roadside. Additionally, according to NASS data, pickup trucks, utility vehicles, and vans are overrepresented in rollover crashes due to higher centers of gravity. An increase in the percentage of light trucks in the vehicle fleet necessitates additional research and updates to the roadside safety guidelines.

The researchers conducted 43,000 simulations for various combinations of roadside slope configurations and geometric conditions that represent real-world crash scenarios.

The results helped to produce this guidance on the traversability of roadside slopes for a variety of roadside conditions—shoulder width, foreslope, and foreslope width. The guidelines are presented as probability of vehicle rollover that is defined as a function of various roadside design features.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!