National Academies Press: OpenBook
« Previous: 7 Exploring Issues of Workforce Development Related to Systems Thinking
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26025.
×

References

Abràmoff, M. D., P. T. Lavin, M. Birch, N. Shah, and J. C. Folk. 2018. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digital Medicine 1(1):1–8.

Addo, F., J. N. Houle, and D. Simon. 2016. Young, black, and (still) in the red: Parental wealth, race, and student loan debt. Race and Social Problems 8(1):64–76.

Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. 2002. Molecular biology of the cell, 4th edition. New York: Garland Science; Drosophila and the Molecular Genetics of Pattern Formation: Genesis of the Body Plan. https://www.ncbi.nlm.nih.gov/books/NBK26906 (accessed May 14, 2021).

Altan-Bonnet, G., and R. N. Germain. 2005. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLOS Biology 3(11):e356.

Altan-Bonnet, G., and R. Mukherjee. 2019. Cytokine-mediated communication: A quantitative appraisal of immune complexity. Nature Reviews Immunology 19(4):205–217.

Amigo, J. M., S. G. Balogh, and S. Hernandez. 2018. A brief review of generalized entropies. Entropy (Basel) 20(11):813.

Anderson, P. W. 1972. More is different. Science 177(4047):393–396.

Arnold, R. D., and J. P. Wade. 2015. A definition of systems thinking: A systems approach. Procedia Computer Science 44(2015):669–678.

Bachthaler, S., and D. Weiskopf. 2008. Continuous scatterplots. IEEE Transactions on Visualization and Computer Graphics 14(6):1428–1435.

Bargaje, R., K. Trachana, M. N. Shelton, C. S. McGinnis, J. X. Zhou, C. Chadick, S. Cook, C. Cavanaugh, S. Huang, and L. Hood. 2017. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells. Proceedings of the National Academy of Sciences 114(9):2271–2276.

Beaupeux, M., and P. François. 2016. Positional information from oscillatory phase shifts: Insights from in silico evolution. Physical Biology 13(3):036009.

Bot, B. M., C. Suver, E. C. Neto, M. Kellen, A. Klein, C. Bare, M. Doerr, A. Pratap, J. Wilbanks, and E. R. Dorsey. 2016. The mPower study, Parkinson disease mobile data collected using ResearchKit. Scientific Data 3(1):1–9.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26025.
×

Burke, C. J., and C. Zylberberg. 2019. Sources of variability in manufacturing of cell therapeutics. Regenerative Engineering and Translational Medicine 5(4):332–340.

Caldwell, J., W. Wang, and P. W. Zandstra. 2015. Proportional-integral-derivative (PID) control of secreted factors for blood stem cell culture. PLOS ONE 10(9):e0137392.

Calude, C. S., and G. Longo. 2017. The deluge of spurious correlations in big data. Foundations of Science 22(3):595–612.

Chang, H. H., M. Hemberg, M. Barahona, D. E. Ingber, and S. Huang. 2008. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453(7194):544–547.

Chen, X., S. Dallmeier-Tiessen, R. Dasler, S. Feger, P. Fokianos, J. B. Gonzalez, H. Hirvonsalo, D. Kousidis, A. Lavasa, and S. Mele. 2019. Open is not enough. Nature Physics 15(2):113–119.

Cherry, C., D. R. Maestas, J. Han, J. I. Andorko, P. Cahan, E. J. Fertig, L. X. Garmire, and J. H. Elisseeff. 2020. Intercellular signaling dynamics from a single cell atlas of the bio-materials response. bioRxiv 218537.

Clark, B. S., G. L. Stein-O’Brien, F. Shiau, G. H. Cannon, E. Davis-Marcisak, T. Sherman, C. P. Santiago, T. V. Hoang, F. Rajaii, and R. E. James-Esposito. 2019. Single-cell RNA-seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification. Neuron 102(6):1111–1126.

Cohen, S., J. Roy, S. Lachance, J. S. Delisle, A. Marinier, L. Busque, D. C. Roy, F. Barabé, I. Ahmad, N. Bambace, L. Bernard, T. Kiss, P. Bouchard, P. Caudrelier, S. Landais, F. Larochelle, J. Chagraoui, B. Lehnertz, S. Corneau, E. Tomellini, J. J. A. van Kampen, J. J. Cornelissen, M. Dumont-Lagacé, M. Tanguay, Q. Li, S. Lemieux, P. W. Zandstra, and G. Sauvageau. 2020. Hematopoietic stem cell transplantation using single UM171-expanded cord blood: A single-arm, phase 1–2 safety and feasibility study. Lancet Haematology 7(2):e134–e145.

Csaszar, E., D. C. Kirouac, M. Yu, W. Wang, W. Qiao, M. P. Cooke, A. E. Boitano, C. Ito, and P. W. Zandstra. 2012. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 10(2):218–229.

Csaszar, E., K. Chen, J. Caldwell, W. Chan, and P. W. Zandstra. 2014. Real-time monitoring and control of soluble signaling factors enables enhanced progenitor cell outputs from human cord blood stem cell cultures. Biotechnology and Bioengineering 111(6):1258–1264.

Davis-Marcisak, E. F., T. D. Sherman, P. Orugunta, G. L. Stein-O’Brien, S. V. Puram, E. T. R. Torres, A. C. Hopkins, E. M. Jaffee, A. V. Favorov, and B. Afsari. 2019. Differential variation analysis enables detection of tumor heterogeneity using single-cell RNA-sequencing data. Cancer Research 79(19):5102–5112.

Deshpande, A., L.-F. Chu, R. Stewart, and A. Gitter. 2019. Network inference with Granger causality ensembles on single-cell transcriptomic data. bioRxiv 534834.

Dubuis, J. O., G. Tkačik, E. F. Wieschaus, T. Gregor, and W. Bialek. 2013. Positional information, in bits. Proceedings of the National Academy of Sciences 110(41):16301–16308.

Dwarshuis, N., H. W. Song, A. Patel, T. Kotanchek, and K. Roy. 2019. Functionalized microcarriers improve T cell manufacturing by facilitating migratory memory T cell production and increasing CD4/CD8 ratio. bioRxiv 646760.

FDA (Food and Drug Administration). 2018. Advanced topics: Successful development of quality cell and gene therapy products. PowerPoint slides available at https://www.fda.gov/media/80404/download (accessed February 10, 2021).

Ferrari, A., S. Lombardi, and A. Signoroni. 2017. Bacterial colony counting with convolutional neural networks in digital microbiology imaging. Pattern Recognition 61:629–640.

Fertig, E. J., J. Ding, A. V. Favorov, G. Parmigiani, and M. F. Ochs. 2010. CoGAPS: An R/C++ package to identify patterns and biological process activity in transcriptomic data. Bioinformatics 26(21):2792–2793.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26025.
×

Fertig, E. J., A. Markovic, L. V. Danilova, D. A. Gaykalova, L. Cope, C. H. Chung, M. F. Ochs, and J. A. Califano. 2013. Preferential activation of the hedgehog pathway by epigenetic modulations in HPV negative HNSCC identified with meta-pathway analysis. PLOS ONE 8(11):e78127.

Franco, R., and A. Cedazo-Minguez. 2014. Successful therapies for Alzheimer’s disease: Why so many in animal models and none in humans? Frontiers in Pharmacology 5:146.

Goodfellow, I. J., Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet. 2013. Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv 1312.6082.

Gordon, D. E., J. Hiatt, M. Bouhaddou, V. V. Rezelj, S. Ulferts, H. Braberg, A. S. Jureka, K. Obernier, J. Z. Guo, J. Batra, R. M. Kaake, A. R. Weckstein, T. W. Owens, M. Gupta, S. Pourmal, E. W. Titus, M. Cakir, M. Soucheray, M. McGregor, Z. Cakir, G. Jang, M. J. O’Meara, T. A. Tummino, Z. Zhang, H. Foussard, A. Rojc, Y. Zhou, D. Kuchenov, R. Hüttenhain, J. Xu, M. Eckhardt, D. L. Swaney, J. M. Fabius, M. Ummadi, B. Tutuncuoglu, U. Rathore, M. Modak, P. Haas, K. M. Haas, Z. Z. C. Naing, E. H. Pulido, Y. Shi, I. Barrio-Hernandez, D. Memon, E. Petsalaki, A. Dunham, M. C. Marrero, D. Burke, C. Koh, T. Vallet, J. A. Silvas, C. M. Azumaya, C. Billesbølle, A. F. Brilot, M. G. Campbell, A. Diallo, M. S. Dickinson, D. Diwanji, N. Herrera, N. Hoppe, H. T. Kratochvil, Y. Liu, G. E. Merz, M. Moritz, H. C. Nguyen, C. Nowotny, C. Puchades, A. N. Rizo, U. Schulze-Gahmen, A. M. Smith, M. Sun, I. D. Young, J. Zhao, D. Asarnow, J. Biel, A. Bowen, J. R. Braxton, J. Chen, C. M. Chio, U. S. Chio, I. Deshpande, L. Doan, B. Faust, S. Flores, M. Jin, K. Kim, V. L. Lam, F. Li, J. Li, Y. L. Li, Y. Li, X. Liu, M. Lo, K. E. Lopez, A. A. Melo, F. R. Moss, 3rd, P. Nguyen, J. Paulino, K. I. Pawar, J. K. Peters, T. H. Pospiech, Jr., M. Safari, S. Sangwan, K. Schaefer, P. V. Thomas, A. C. Thwin, R. Trenker, E. Tse, T. K. M. Tsui, F. Wang, N. Whitis, Z. Yu, K. Zhang, Y. Zhang, F. Zhou, D. Saltzberg, A. J. Hodder, A. S. Shun-Shion, D. M. Williams, K. M. White, R. Rosales, T. Kehrer, L. Miorin, E. Moreno, A. H. Patel, S. Rihn, M. M. Khalid, A. Vallejo-Gracia, P. Fozouni, C. R. Simoneau, T. L. Roth, D. Wu, M. A. Karim, M. Ghoussaini, I. Dunham, F. Berardi, S. Weigang, M. Chazal, J. Park, J. Logue, M. McGrath, S. Weston, R. Haupt, C. J. Hastie, M. Elliott, F. Brown, K. A. Burness, E. Reid, M. Dorward, C. Johnson, S. G. Wilkinson, A. Geyer, D. M. Giesel, C. Baillie, S. Raggett, H. Leech, R. Toth, N. Goodman, K. C. Keough, A. L. Lind, R. J. Klesh, K. R. Hemphill, J. Carlson-Stevermer, J. Oki, K. Holden, T. Maures, K. S. Pollard, A. Sali, D. A. Agard, Y. Cheng, J. S. Fraser, A. Frost, N. Jura, T. Kortemme, A. Manglik, D. R. Southworth, R. M. Stroud, D. R. Alessi, P. Davies, M. B. Frieman, T. Ideker, C. Abate, N. Jouvenet, G. Kochs, B. Shoichet, M. Ott, M. Palmarini, K. M. Shokat, A. García-Sastre, J. A. Rassen, R. Grosse, O. S. Rosenberg, K. A. Verba, C. F. Basler, M. Vignuzzi, A. A. Peden, P. Beltrao, and N. J. Krogan. 2020. Comparative host–coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science 370(6521):eabe9403.

Gregor, T., D. W. Tank, E. F. Wieschaus, and W. Bialek. 2007. Probing the limits to positional information. Cell 130(1):153–164.

Guinney, J., and J. Saez-Rodriguez. 2018. Alternative models for sharing confidential biomedical data. Nature Biotechnology 36(5):391–392.

Gulshan, V., L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman, P. C. Nelson, J. L. Mega, and D. R. Webster. 2016. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410.

Henry, A., M. Hemery, and P. François. 2018. Φ-evo: A program to evolve phenotypic models of biological networks. PLOS Computational Biology 14(6):e1006244.

Huang, S., G. Eichler, Y. Bar-Yam, and D. E. Ingber. 2005. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Physical Review Letters 94(12):128701.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26025.
×

Kirouac, D. C., C. Ito, E. Csaszar, A. Roch, M. Yu, E. A. Sykes, G. D. Bader, and P. W. Zandstra. 2010. Dynamic interaction networks in a hierarchically organized tissue. Molecular Systems Biology 6:417.

Lam, C., E. Meinert, A. Alturkistani, A. R. Carter, J. Karp, A. Yang, D. Brindley, and Z. Cui. 2018. Decision support tools for regenerative medicine: Systematic review. Journal of Medical Internet Research 20(12):e12448.

Laughlin, S. 1981. A simple coding procedure enhances a neuron’s information capacity. Zeitschrift für Naturforsch C 36(9–10):910–912.

Lim, H., and H. Shin. 2013. Classification and Characteristics of Fed-Batch Cultures. In Fed-Batch cultures: Principles and applications of semi-batch bioreactors (Cambridge Series in Chemical Engineering, pp. 62–84). Cambridge, UK: Cambridge University Press.

Lipniacki, T., B. Hat, J. R. Faeder, and W. S. Hlavacek. 2008. Stochastic effects and bistability in T cell receptor signaling. Journal of Theoretical Biology 254(1):110–122.

Lipsitz, Y. Y., N. E. Timmins, and P. W. Zandstra. 2016. Quality cell therapy manufacturing by design. Nature Biotechnology 34(4):393–400.

Liu, X., Y. Chen, J. Bae, H. Li, J. Johnston, and T. Sanger. 2019. Predicting heart failure readmission from clinical notes using deep learning. Paper read at 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), November 18–21. https://arxiv.org/abs/1912.10306 (accessed March 22, 2021).

Ly, T., C. Pamer, O. Dang, S. Brajovic, S. Haider, T. Botsis, D. Milward, A. Winter, S. Lu, and R. Ball. 2018. Evaluation of natural language processing (NLP) systems to annotate drug product labeling with MedDRA terminology. Journal of Biomedical Informatics 83:73–86.

Manyika. J., M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. 2011. Big data: The next frontier for innovation, competition, and productivity. New York: McKinsey Global Institute. https://www.mckinsey.com/business-functions/mckinseydigital/our-insights/big-data-the-next-frontier-for-innovation (accessed January 13, 2021).

Melsted, P., A. S. Booeshaghi, F. Gao, E. da Veiga Beltrame, L. Lu, K. E. Hjorleifsson, J. Gehring, and L. Pachter. 2019. Modular and efficient pre-processing of single-cell RNA-seq. bioRxiv 673285.

Mojtahedi, M., A. Skupin, J. Zhou, I. G. Castaño, R. Y. Leong-Quong, H. Chang, K. Trachana, A. Giuliani, and S. Huang. 2016. Cell fate decision as high-dimensional critical state transition. PLOS Biology 14(12):e2000640.

Mueller, K. T., E. Waldron, S. A. Grupp, J. E. Levine, T. W. Laetsch, M. A. Pulsipher, M. W. Boyer, K. J. August, J. Hamilton, and R. Awasthi. 2018. Clinical pharmacology of tisagenlecleucel in B-cell acute lymphoblastic leukemia. Clinical Cancer Research 24(24):6175–6184.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2017. Navigating the manufacturing process and ensuring the quality of regenerative medicine therapies: Proceedings of a workshop. Washington, DC: The National Academies Press.

NCMC (National Cell Manufacturing Consortium). 2016. Achieving large-scale, cost-effective, reproducible manufacturing of high-quality cells: A technology roadmap to 2025. http://www.cellmanufacturingusa.org/sites/default/files/NCMC_Roadmap_021816_high_res-2.pdf (accessed January 6, 2021).

Neelapu, S. S., F. L. Locke, N. L. Bartlett, L. J. Lekakis, D. B. Miklos, C. A. Jacobson, I. Braunschweig, O. O. Oluwole, T. Siddiqi, and Y. Lin. 2017. Axicabtagene ciloleucel CAR T cell therapy in refractory large B-cell lymphoma. New England Journal of Medicine 377(26):2531–2544.

Nielsen, M. 2015. Neural networks and deep learning. Determination Press. Online book. http://neuralnetworksanddeeplearning.com (accessed January 24, 2021).

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26025.
×

Opdam, S., A. Richelle, B. Kellman, S. Li, D. C. Zielinski, and N. E. Lewis. 2017. A systematic evaluation of methods for tailoring genome-scale metabolic models. Cell Systems 4(3):318–329.

Palpant, N. J., P. Hofsteen, L. Pabon, H. Reinecke, and C. E. Murry. 2015. Cardiac development in zebrafish and human embryonic stem cells is inhibited by exposure to tobacco cigarettes and e-cigarettes. PLOS ONE 10(5):e0126259.

Petkova, M. D., G. Tka ik, W. Bialek, E. F. Wieschaus, and T. Gregor. 2019. Optimal decoding of cellular identities in a genetic network. Cell 176(4):844–855.

Poplin, R., A. V. Varadarajan, K. Blumer, Y. Liu, M. V. McConnell, G. S. Corrado, L. Peng, and D. R. Webster. 2018. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering 2(3):158–164.

Proulx-Giraldeau, F., T. J. Rademaker, and P. François. 2017. Untangling the hairball: Fitness-based asymptotic reduction of biological networks. Biophysical Journal 113(8):1893–1906.

Pulla, P. 2019. The plan to mine the world’s research papers. Nature 571(7766):316–319.

Qiao, W., W. Wang, E. Laurenti, A. L. Turinsky, S. J. Wodak, G. D. Bader, J. E. Dick, and P. W. Zandstra. 2014. Intercellular network structure and regulatory motifs in the human hematopoietic system. Molecular Systems Biology 10(7):741.

Ray, S., and S. Pyne. 2012. A computational framework to emulate the human perspective in flow cytometric data analysis. PLOS ONE 7(5):e35693.

Richelle, A., and M. van Stosch. 2020. From big data to precise understanding: The quest for meaningful information. Bio Process International, February 6. https://bioprocessintl.com/manufacturing/information-technology/systems-biology-tools-for-big-data-in-the-biopharmaceutical-industry (accessed January 13, 2021).

Richelle, A., B. David, D. Demaegd, M. Dewerchin, R. Kinet, A. Morreale, R. Portela, Q. Zune, and M. von Stosch. 2020. Towards a widespread adoption of metabolic modeling tools in biopharmaceutical industry: A process systems biology engineering perspective. npj Systems Biology and Applications 6(1):6.

Riley, P. 2019. Three pitfalls to avoid in machine learning. Nature 572:27–29.

Rudrapatna, V. A., and A. J. Butte. 2020. Opportunities and challenges in using real-world data for health care. Journal of Clinical Investigation 130(2):565–574.

Schadt, E. E., J. Lamb, X. Yang, J. Zhu, S. Edwards, D. GuhaThakurta, S. K. Sieberts, S. Monks, M. Reitman, and C. Zhang. 2005. An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genetics 37(7):710–717.

Sieberts, S. K., J. Schaff, M. Duda, B. Á. Pataki, M. Sun, P. Snyder, J. F. Daneault, F. Parisi, G. Costante, U. Rubin, P. Banda, Y. Chae, E. Chaibub Neto, E. R. Dorsey, Z. Aydın, A. Chen, L. L. Elo, C. Espino, E. Glaab, E. Goan, F. N. Golabchi, Y. Görmez, M. K. Jaakkola, J. Jonnagaddala, R. Klén, D. Li, C. McDaniel, D. Perrin, T. M. Perumal, N. M. Rad, E. Rainaldi, S. Sapienza, P. Schwab, N. Shokhirev, M. S. Venäläinen, G. Vergara-Diaz, Y. Zhang, Parkinson’s Disease Digital Biomarker Challenge Consortium, Y. Wang, Y. Guan, D. Brunner, P. Bonato, L. M. Mangravite, and L. Omberg. 2021. Crowdsourcing digital health measures to predict Parkinson’s disease severity: The Parkinson’s disease digital biomarker DREAM Challenge. NPJ Digital Medicine 4(1):53.

Stein-O’Brien, G. L., R. Arora, A. C. Culhane, A. V. Favorov, L. X. Garmire, C. S. Greene, L. A. Goff, Y. Li, A. Ngom, and M. F. Ochs. 2018. Enter the matrix: Factorization uncovers knowledge from omics. Trends in Genetics 34(10):790–805.

Stein-O’Brien, G. L., B. S. Clark, T. Sherman, C. Zibetti, Q. Hu, R. Sealfon, S. Liu, J. Qian, C. Colantuoni, and S. Blackshaw. 2019. Decomposing cell identity for transfer learning across cellular measurements, platforms, tissues, and species. Cell Systems 8(5):395–411.

Tewary, M., N. Shakiba, and P. W. Zandstra. 2018. Stem cell bioengineering: Building from stem cell biology. Nature Reviews Genetics 19(10):595–614.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26025.
×

Till, J. E., E. A. McCulloch, and L. Siminovitch. 1964. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proceedings of the National Academy of Sciences 51(1):29–36.

Tkačik, G., C. G. Callan, and W. Bialek. 2008. Information flow and optimization in transcriptional regulation. Proceedings of the National Academy of Sciences 105(34):12265–12270.

Topol, E. J. 2019. High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine 25:44–56.

Trachana, K., R. Bargaje, G. Glusman, N. D. Price, S. Huang, and L. E. Hood. 2018. Taking systems medicine to heart. Circulation Research 122(9):1276–1289.

Trapnell C., D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J. Lennon, K. J. Livak, T. S. Mikkelsen, and J. L. Rinn. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology 32(4):381–386.

Tsokas, K., R. McFarland, C. Burke, J. L. Lynch, T. Bollenbach, D. A. Callaway II, and J. Siegel. 2019. Reducing risks and delays in the translation of cell and gene therapy innovations into regulated products. NAM Perspectives. Discussion paper. Washington, DC: The National Academies Press.

Turing, A. M. 1952. The chemical basis of morphogenesis. Bulletin of Mathematical Biology 52(1–2):153–197.

Verhoeff, R. P., M.-C. P. Knippels, M. G. Gilissen, and K. T. Boersma. 2018. The theoretical nature of systems thinking. Perspectives on systems thinking in biology education. Frontiers in Education. https://doi.org/10.3389/feduc.2018.00040.

Waddington, C. H. 1957. The strategy of the genes. New York: Routledge.

Wagner, A., A. Regev, and N. Yosef. 2016. Revealing the vectors of cellular identity with single-cell genomics. Nature Biotechnology 34(11):1145–1160.

Wan, Y.-W., R. Al-Ouran, C. G. Mangleburg, T. M. Perumal, T. V. Lee, K. Allison, V. Swarup, C. C. Funk, C. Gaiteri, M. Allen, M. Wang, S. M. Neuner, C. C. Kaczorowski, V. M. Philip, G. R. Howell, H. Martini-Stoica, H. Zheng, H. Mei, X. Zhong, J. W. Kim, V. L. Dawson, T. M. Dawson, P.-C. Pao, L.-H. Tsai, J.-V. Haure-Mirande, M. E. Ehrlich, P. Chakrabarty, Y. Levites, X. Wang, E. B. Dammer, G. Srivastava, S. Mukherjee, S. K. Sieberts, L.Omberg, K. D. Dang, J. A. Eddy, P. Snyder, Y. Chae, S. Amberkar, W. Wei, W. Hide, C. Preuss, A. Ergun, P. J. Ebert, D. C. Airey, S. Mostafavi, L. Yu, H.-U. Klein, Accelerating Medicines Partnership–Alzheimer’s Disease Consortium, G. W. Carter, D. A. Collier, T. E. Golde, A. I. Levey, D. A. Bennett, K. Estrada, T. M. Townsend, B. Zhang, E. Schadt, P. L. De Jager, N. D. Price, N. Ertekin-Taner, Z. Liu, J. M. Shulman, L. M. Mangravite, and B. A. Logsdon. 2020. Meta-analysis of the Alzheimer’s disease human brain transcriptome and functional dissection in mouse models. Cell Reports 32(2):107908.

Way, G. P., M. Zietz, V. Rubinetti, D. S. Himmelstein, and C. S. Greene. 2020. Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations. Genome Biology 21:109.

Wu, L., D. Wang, and J. A. Evans. 2019. Large teams develop and small teams disrupt science and technology. Nature 566(7744):378–382.

Wuchty, S., B. F. Jones, and B. Uzzi. 2007. The increasing dominance of teams in production of knowledge. Science 316(5827):1036–1039.

Xue, Q., E. Bettini, P. Paczkowski, C. Ng, A. Kaiser, T. McConnell, O. Kodrasi, M. F. Quigley, J. Heath, and R. Fan. 2017. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. Journal for Immunotherapy of Cancer 5(1):85.

Zhou, J. X., M. Aliyu, E. Aurell, and S. Huang. 2012. Quasi-potential landscape in complex multi-stable systems. Journal of the Royal Society Interface 9(77):3539–3553.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26025.
×
Page 121
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26025.
×
Page 122
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26025.
×
Page 123
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26025.
×
Page 124
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26025.
×
Page 125
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26025.
×
Page 126
Next: Appendix A: Workshop Agenda »
Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop Get This Book
×
 Applying Systems Thinking to Regenerative Medicine: Proceedings of a Workshop
Buy Paperback | $40.00 Buy Ebook | $32.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Regenerative medicine products, which are intended to repair or replace damaged cells or tissues in the body, include a range of therapeutic approaches such as cell- and gene-based therapies, engineered tissues, and non-biologic constructs. The current approach to characterizing the quality of a regenerative medicine product and the manufacturing process often involves measuring as many endpoints as possible, but this approach has proved to be inadequate and unsustainable.

The Forum on Regenerative Medicine of the National Academies of Sciences, Engineering, and Medicine convened experts across disciplines for a 2-day virtual public workshop to explore systems thinking approaches and how they may be applied to support the identification of relevant quality attributes that can help in the optimization of manufacturing and streamline regulatory processes for regenerative medicine. A broad array of stakeholders, including data scientists, physical scientists, industry researchers, regulatory officials, clinicians, and patient representatives, discussed new advances in data acquisition, data analysis and theoretical frameworks, and how systems approaches can be applied to the development of regenerative medicine products that can address the unmet needs of patients. This publication summarizes the presentation and discussion of the workshop.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!