National Academies Press: OpenBook
« Previous: 8 Potential Next Steps and Future Opportunities
Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2021. Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26218.
×

A

References

Abdallah, C. G., C. L. Averill, R. Salas, L. A. Averill, P. R. Baldwin, J. H. Krystal, S. J. Mathew, and D. H. Mathalon. 2017. Prefrontal connectivity and glutamate transmission: Relevance to depression pathophysiology and ketamine treatment. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 2(7):566–574.

Abdallah, C. G., H. M. De Feyter, L. A. Averill, L. Jiang, C. L. Averill, G. M. I. Chowdhury, P. Purohit, R. A. de Graaf, I. Esterlis, C. Juchem, B. P. Pittman, J. H. Krystal, D. L. Rothman, G. Sanacora, and G. F. Mason. 2018. The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43(10):2154–2160.

Abdallah, C. G., L. A. Averill, R. Gueorguieva, S. Goktas, P. Purohit, M. Ranganathan, M. Sherif, K. H. Ahn, D. C. D’Souza, R. Formica, S. M. Southwick, R. S. Duman, G. Sanacora, and J. H. Krystal. 2020. Modulation of the antidepressant effects of ketamine by the mTORC1 inhibitor rapamycin. Neuropsychopharmacology 45(6):990–997.

Abdel-Magid, A. F. 2015. Allosteric modulators: An emerging concept in drug discovery. ACS Medicinal Chemistry Letters 6(2):104–107.

Alexandrov, V., D. Brunner, T. Hanania, and E. Leahy. 2015. Reprint of: Highthroughput analysis of behavior for drug discovery. European Journal of Pharmacology 753:127–134.

Antonoudiou, P., P. L. W. Colmers, N. L. Walton, G. L. Weiss, A. C. Smith, D. P. Nguyen, M. Lewis, M. C. Quirk, L. C. Melon, and J. L. Maguire. 2021. Allopregnanolone mediates affective switching through modulation of oscillatory states in the basolateral amygdala. bioRxiv 2021.2003.2008.434156.

Azhar, Y., and A. U. Din. 2021. Brexanolone. In StatPearls. Treasure Island, FL: StatPearls Publishing.

Ballard, E. D., and C. A. Zarate. 2020. The role of dissociation in ketamine’s antidepressant effects. Nature Communications 11(1):6431.

Bellum, S. 2010. Word of the day: Psychoactive drugs. National Institute on Drug Abuse. https://archives.drugabuse.gov/blog/post/word-day-psychoactive-drugs (accessed June 8, 2021).

Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2021. Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26218.
×

Berman, R. M., A. Cappiello, A. Anand, D. A. Oren, G. R. Heninger, D. S. Charney, and J. H. Krystal. 2000. Antidepressant effects of ketamine in depressed patients. Biological Psychiatry 47(4):351–354.

Bodick, N. C., W. W. Offen, A. I. Levey, N. R. Cutler, S. G. Gauthier, A. Satlin, H. E. Shannon, G. D. Tollefson, K. Rasmussen, F. P. Bymaster, D. J. Hurley, W. Z. Potter, and S. M. Paul. 1997. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Archives of Neurology 54(4):465–473.

Brannan, S. K., S. Sawchak, A. C. Miller, J. A. Lieberman, S. M. Paul, and A. Breier. 2021. Muscarinic cholinergic receptor agonist and peripheral antagonist for schizophrenia. New England Journal of Medicine 384(8):717–726.

Bugarski-Kirola, D., T. Blaettler, C. Arango, W. W. Fleischhacker, G. Garibaldi, A. Wang, M. Dixon, R. A. Bressan, H. Nasrallah, S. Lawrie, J. Napieralski, T. Ochi-Lohmann, C. Reid, and S. R. Marder. 2017. Bitopertin in negative symptoms of schizophrenia-results from the phase III flashlyte and daylyte studies. Biological Psychiatry 82(1):8–16.

Cahn, C. 2006. Roland Kuhn, 1912–2005. Neuropsychopharmacology 31(5):1096.

Calcaterra, N. E., and J. C. Barrow. 2014. Classics in chemical neuroscience: Diazepam (valium). ACS Chemical Neuroscience 5(4):253–260.

Carhart-Harris, R. L., and G. M. Goodwin. 2017. The therapeutic potential of psychedelic drugs: Past, present, and future. Neuropsychopharmacology 42(11):2105–2113.

Casey, B. J., M. E. Oliveri, and T. Insel. 2014. A neurodevelopmental perspective on the research domain criteria (RDoC) framework. Biological Psychiatry 76(5):350–353.

Correia-Melo, F. S., G. C. Leal, F. Vieira, A. P. Jesus-Nunes, R. P. Mello, G. Magnavita, A. T. Caliman-Fontes, M. V. F. Echegaray, I. D. Bandeira, S. S. Silva, D. E. Cavalcanti, L. Araújo-de-Freitas, L. M. Sarin, M. A. Tuena, C. Nakahira, A. S. Sampaio, J. A. Del-Porto, G. Turecki, C. Loo, A. L. T. Lacerda, and L. C. Quarantini. 2020. Efficacy and safety of adjunctive therapy using esketamine or racemic ketamine for adult treatment-resistant depression: A randomized, double-blind, non-inferiority study. Journal of Affective Disorders 264:527–534.

Czeisler, M., R. Lane, E. Petrosky, J. Wiley, A. Christensen, R. Njai, M. Weaver, R. Robbins, E. Facer-Childs, L. Barger, C. Czeisler, M. Howard, and S. Rajaratnam 2020. Mental health, substance use, and suicidal ideation during the COVID-19 pandemic—United States. Morbidity and Mortality Weekly Report. Atlanta, GA: Centers for Disease Control and Prevention.

Daly, E. J., M. H. Trivedi, A. Janik, H. Li, Y. Zhang, X. Li, R. Lane, P. Lim, A. R. Duca, D. Hough, M. E. Thase, J. Zajecka, A. Winokur, I. Divacka, A. Fagiolini, W. J. Cubala, I. Bitter, P. Blier, R. C. Shelton, P. Molero, H. Manji, W. C. Drevets, and J. B. Singh. 2019. Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: A randomized clinical trial. JAMA Psychiatry 76(9):893–903.

Das, R. K., G. Gale, K. Walsh, V. E. Hennessy, G. Iskandar, L. A. Mordecai, B. Brandner, M. Kindt, H. V. Curran, and S. K. Kamboj. 2019. Ketamine can reduce harmful drinking by pharmacologically rewriting drinking memories. Nature Communications 10(1):5187.

De Gregorio, D., L. Posa, R. Ochoa-Sanchez, R. McLaughlin, S. Maione, S. Comai, and G. Gobbi. 2016. The hallucinogen d-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT(1A), D(2) and TAAR(1) receptors. Pharmacological Research 113(Pt A):81–91.

Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2021. Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26218.
×

De Gregorio, D., J. Popic, J. P. Enns, A. Inserra, A. Skalecka, A. Markopoulos, L. Posa, M. Lopez-Canul, H. Qianzi, C. K. Lafferty, J. P. Britt, S. Comai, A. Aguilar-Valles, N. Sonenberg, and G. Gobbi. 2021. Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proceedings of the National Academy of Sciences 118(5):e2020705118.

DEA (Drug Enforcement Administration). 2020. Drug fact sheet: Psilocybin. Department of Justice/DEA. https://www.dea.gov/sites/default/files/2020-06/Psilocybin-2020_0.pdf (accessed June 8, 2021).

Dedic, N., P. G. Jones, S. C. Hopkins, R. Lew, L. Shao, J. E. Campbell, K. L. Spear, T. H. Large, U. C. Campbell, T. Hanania, E. Leahy, and K. S. Koblan. 2019. SEP-363856, a novel psychotropic agent with a unique, non-D2 receptor mechanism of action. Journal of Pharmacology and Experimental Therapeutics 371(1):1–14.

Delgado, P. L. 2000. Depression: The case for a monoamine deficiency. The Journal of Clinical Psychiatry 61(Suppl 6):7–11.

Drug Bank Online. 2021. https://go.drugbank.com/drugs (accessed July 12, 2021).

Duman, R. S., G. K. Aghajanian, G. Sanacora, and J. H. Krystal. 2016. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nature Medicine 22(3):238–249.

Esterlis, I., N. DellaGioia, R. H. Pietrzak, D. Matuskey, N. Nabulsi, C. G. Abdallah, J. Yang, C. Pittenger, G. Sanacora, J. H. Krystal, R. V. Parsey, R. E. Carson, and C. DeLorenzo. 2018. Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: An [(11)C]ABP688 and PET imaging study in depression. Molecular Psychiatry 23(4):824–832.

FDA (Food and Drug Administration). 2018. Major depressive disorder: Developing drugs for treatment guidance for industry, edited by FDA. Washington, DC: FDA.

FDA-Approved Drugs. 2021. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=reportsSearch.process (accessed July 12, 2021).

Ferguson, B. R., and W. J. Gao. 2018. PV interneurons: Critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Frontiers in Neural Circuits 12:37.

Fleischhacker, W. W., J. Podhorna, M. Groschl, S. Hake, Y. Zhao, S. Huang, R. S. E. Keefe, M. Desch, R. Brenner, D. P. Walling, E. Mantero-Atienza, K. Nakagome, and S. Pollentier. 2021. Efficacy and safety of the novel glycine transporter inhibitor BI 425809 once daily in patients with schizophrenia: A double-blind, randomised, placebo-controlled phase 2 study. Lancet Psychiatry 8(3):191–201.

Gerbasi, M. E., M. Kosinski, S. Meltzer-Brody, S. Acaster, M. Fridman, M. Y. Huang, V. Bonthapally, P. Hodgkins, S. J. Kanes, and A. Eldar-Lissai. 2021. Achieving clinical response in postpartum depression leads to improvement in health-related quality of life. Current Medical Research and Opinion 1–11.

Gilbert, J. R., and C. A. Zarate, Jr. 2020. Electrophysiological biomarkers of antidepressant response to ketamine in treatment-resistant depression: Gamma power and long-term potentiation. Pharmacology Biochemistry and Behavior 189:172856.

Grunebaum, M. F., H. C. Galfalvy, T. H. Choo, J. G. Keilp, V. K. Moitra, M. S. Parris, J. E. Marver, A. K. Burke, M. S. Milak, M. E. Sublette, M. A. Oquendo, and J. J. Mann. 2018. Ketamine for rapid reduction of suicidal thoughts in major depression: A midazolamcontrolled randomized clinical trial. The American Journal of Psychiatry 175(4):327–335.

Holmes, S. E., D. Scheinost, S. J. Finnema, M. Naganawa, M. T. Davis, N. DellaGioia, N. Nabulsi, D. Matuskey, G. A. Angarita, R. H. Pietrzak, R. S. Duman, G. Sanacora, J. H. Krystal, R. E. Carson, and I. Esterlis. 2019. Lower synaptic density is associated with depression severity and network alterations. Nature Communications 10(1):1529.

Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2021. Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26218.
×

IHME (Institute for Health Metrics and Evaluation). Top 10 causes of death and disability (DALYs) in 2019 and percent change 2009–2019, all ages combined. 2021. http://www.healthdata.org/united-states (accessed July 16, 2021).

Kato, T., S. Pothula, R. J. Liu, C. H. Duman, R. Terwilliger, G. P. Vlasuk, E. Saiah, S. Hahm, and R. S. Duman. 2019. Sestrin modulator NV-5138 produces rapid antidepressant effects via direct mTORC1 activation. Journal of Clinical Investigation 129(6):2542–2554.

Koblan, K. S., J. Kent, S. C. Hopkins, J. H. Krystal, H. Cheng, R. Goldman, and A. Loebel. 2020. A Non-D2-receptor-binding drug for the treatment of schizophrenia. New England Journal of Medicine 382(16):1497–1506.

Krystal, J. H., A. Anticevic, G. J. Yang, G. Dragoi, N. R. Driesen, X. J. Wang, and J. D. Murray. 2017. Impaired tuning of neural ensembles and the pathophysiology of schizophrenia: A translational and computational neuroscience perspective. Biological Psychiatry 81(10):874–885.

Leucht, S., A. Cipriani, L. Spineli, D. Mavridis, D. Orey, F. Richter, M. Samara, C. Barbui, R. R. Engel, J. R. Geddes, W. Kissling, M. P. Stapf, B. Lassig, G. Salanti, and J. M. Davis. 2013. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis. The Lancet 382(9896):951–962.

Maguire, J., and I. Mody. 2008. GABA(A)R plasticity during pregnancy: Relevance to postpartum depression. Neuron 59(2):207–213.

McIntyre, R. S., I. P. Carvalho, L. M. W. Lui, A. Majeed, P. S. Masand, H. Gill, N. B. Rodrigues, O. Lipsitz, A. C. Coles, Y. Lee, J. K. Tamura, M. Iacobucci, L. Phan, F. Nasri, N. Singhal, E. R. Wong, M. Subramaniapillai, R. Mansur, R. Ho, R. W. Lam, and J. D. Rosenblat. 2020. The effect of intravenous, intranasal, and oral ketamine in mood disorders: A meta-analysis. Journal of Affective Disorders 276:576–584.

Meltzer-Brody, S., H. Colquhoun, R. Riesenberg, C. N. Epperson, K. M. Deligiannidis, D. R. Rubinow, H. Li, A. J. Sankoh, C. Clemson, A. Schacterle, J. Jonas, and S. Kanes. 2018. Brexanolone injection in post-partum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. The Lancet 392(10152):1058–1070.

Miller, G. E., E. Chen, C. C. Armstrong, A. L. Carroll, S. Ozturk, K. J. Rydland, G. H. Brody, T. B. Parrish, and R. Nusslock. 2018. Functional connectivity in central executive network protects youth against cardiometabolic risks linked with neighborhood violence. Proceedings of the National Academy of Sciences 115(47):12063–12068.

Mohler, H., and T. Okada. 1977. Benzodiazepine receptor: Demonstration in the central nervous system. Science 198(4319):849.

Neurocrine Biosciences. 2021. Neurocrine biosciences announces top-line results from phase II interact study evaluating luvadaxistat (NBI-1065844) for the treatment of negative symptoms and cognitive impairment associated with schizophrenia (CIAS). https://www.prnewswire.com/news-releases/neurocrine-biosciences-announces-top-line-resultsfrom-phase-ii-interact-study-evaluating-luvadaxistat-nbi-1065844-for-the-treatmentof-negative-symptoms-and-cognitive-impairment-associated-with-schizophreniacias-301238086.html (accessed July 14, 2021).

NIMH (National Institute of Mental Health). 2021. Schizophrenia. https://www.nimh.nih.gov/health/topics/schizophrenia (accessed July 14, 2021).

Passie, T., J. H. Halpern, D. O. Stichtenoth, H. M. Emrich, and A. Hintzen. 2008. The pharmacology of lysergic acid diethylamide: A review. CNS Neuroscience & Therapeutics 14(4):295–314.

Pavlov, I., L. P. Savtchenko, I. Song, J. Koo, A. Pimashkin, D. A. Rusakov, and A. Semyanov. 2014. Tonic GABAA conductance bidirectionally controls interneuron firing pattern and synchronization in the CA3 hippocampal network. Proceedings of the National Academy of Sciences 111(1):504–509.

Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2021. Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26218.
×

Ramachandraih, C. T., N. Subramanyam, K. J. Bar, G. Baker, and V. K. Yeragani. 2011. Antidepressants: From MAOIs to SSRIs and more. Indian Journal of Psychiatry 53(2):180–182.

Rush, A. J., M. H. Trivedi, S. R. Wisniewski, A. A. Nierenberg, J. W. Stewart, D. Warden, G. Niederehe, M. E. Thase, P. W. Lavori, B. D. Lebowitz, P. J. McGrath, J. F. Rosenbaum, H. A. Sackeim, D. J. Kupfer, J. Luther, and M. Fava. 2006. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. The American Journal of Psychiatry 163(11):1905–1917.

Seeley, W. W., V. Menon, A. F. Schatzberg, J. Keller, G. H. Glover, H. Kenna, A. L. Reiss, and M. D. Greicius. 2007. Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience 27(9):2349–2356.

Seeman, P. 2011. All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2(high) receptors. CNS Neuroscience & Therapeutics 17(2):118–132.

Sengupta, S., E. Giaime, S. Narayan, S. Hahm, J. Howell, D. O’Neill, G. P. Vlasuk, and E. Saiah. 2019. Discovery of NV-5138, the first selective Brain mTORC1 activator. Scientific Reports 9(1):4107.

Shekhar, A., W. Z. Potter, J. Lightfoot, J. Lienemann, S. Dubé, C. Mallinckrodt, F. P. Bymaster, D. L. McKinzie, and C. C. Felder. 2008. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. The American Journal of Psychiatry 165(8):1033–1039.

Singh, I., C. Morgan, V. Curran, D. Nutt, A. Schlag, and R. McShane. 2017. Ketamine treatment for depression: Opportunities for clinical innovation and ethical foresight. Lancet Psychiatry 4(5):419–426.

Singh, J. B., E. J. Daly, M. Mathews, M. Fedgchin, V. Popova, D. Hough, and W. C. Drevets. 2020. Approval of esketamine for treatment-resistant depression. Lancet Psychiatry 7(3):232–235.

Sisti, D., A. G. Segal, and M. E. Thase. 2014. Proceed with caution: Off-label ketamine treatment for major depressive disorder. Current Psychiatry Reports 16(12):527.

Stone, J. M., C. Dietrich, R. Edden, M. A. Mehta, S. De Simoni, L. J. Reed, J. H. Krystal, D. Nutt, and G. J. Barker. 2012. Ketamine effects on brain GABA and glutamate levels with 1H-MRS: Relationship to ketamine-induced psychopathology. Molecular Psychiatry 17(7):664–665.

Vézina, C., A. Kudelski, and S. N. Sehgal. 1975. Rapamycin (AY-22,989), a new antifungal antibiotic. Taxonomy of the producing streptomycete and isolation of the active principle. The Journal of Antibiotics (Tokyo) 28(10):721–726.

Vliegen, N., S. Casalin, and P. Luyten. 2014. The course of postpartum depression: A review of longitudinal studies. Harvard Review of Psychiatry 22(1):1–22.

Wilkinson, S. T., E. D. Ballard, M. H. Bloch, S. J. Mathew, J. W. Murrough, A. Feder, P. Sos, G. Wang, C. A. Zarate, Jr., and G. Sanacora. 2018. The effect of a single dose of intravenous ketamine on suicidal ideation: A systematic review and individual participant data meta-analysis. The American Journal of Psychiatry 175(2):150–158.

Zarate, C. A., Jr., J. B. Singh, P. J. Carlson, N. E. Brutsche, R. Ameli, D. A. Luckenbaugh, D. S. Charney, and H. K. Manji. 2006. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Archives of General Psychiatry 63(8):856–864.

Zhou, H.-X., X. Chen, Y.-Q. Shen, L. Li, N.-X. Chen, Z.-C. Zhu, F. X. Castellanos, and C.-G. Yan. 2020. Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression. NeuroImage 206:116287.

Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2021. Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26218.
×

This page intentionally left blank.

Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2021. Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26218.
×
Page 61
Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2021. Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26218.
×
Page 62
Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2021. Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26218.
×
Page 63
Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2021. Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26218.
×
Page 64
Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2021. Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26218.
×
Page 65
Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2021. Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26218.
×
Page 66
Next: Appendix B: Workshop Agenda »
Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop Get This Book
×
 Novel Molecular Targets for Mood Disorders and Psychosis: Proceedings of a Workshop
Buy Paperback | $45.00 Buy Ebook | $36.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Mood disorders - including depression and bipolar disorder - are common, disabling, and potentially lethal disorders, characterized by a shortened lifespan from comorbid medical illness and rising suicide rates. Medications for these conditions have been shown to be insufficiently effective in the majority of people who take them, and there remains a tremendous unmet medical need. Recent advances towards understanding the mechanisms of action for psychiatric medicines have led to the identification of potential novel molecular targets and agents for treating mood disorders. While these promising avenues for further investigation have re-energized scientific research in this area, many open questions remain. In response to this interest, the National Academies of Sciences, Engineering, and Medicine's Forum on Neuroscience and Nervous System Disorders convened a workshop in March 2021, Novel Molecular Targets for Mood Disorders and Psychosis.

The goal of this workshop was to explore the landscape of novel pharmacologic treatments for psychiatric disorders, review the challenges and opportunities that have been highlighted by the development of recently approved drugs, and reflect on how to apply those lessons learned towards current and future efforts to identify and validate additional novel molecular targets. With a grounding in the personal experiences of patients living with depression and schizophrenia, workshop participants discussed the scientific, clinical, technological, regulatory, and ethical considerations of this topic. Examples of drug classes discussed in the workshop include antagonists for NMDA (N-methyl-D-aspartate) receptors and GABA (gamma-aminobutyric acid) receptors, as well as modulators for muscarinic and serotonergic receptors. This publication summarizes the presentations and discussions from the workshop.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!