National Academies Press: OpenBook

Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base (1992)

Chapter: E Conservation Supply Data for Three Transportation Sectors

« Previous: D Conservation Supply Curves for Industrial Energy Use
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 727

Appendix E
Conservation Supply Data for Three Transportation Sectors

This appendix provides information on the calculation method used to determine cost-effectiveness for three transportation sectors: light-duty vehicles, heavy trucks, and aircraft.

Light-Duty Vehicles

Light-duty vehicle efficiencies were emphasized in Chapter 23 as the largest and most thoroughly studied transportation sector. Table E.1 shows the amount of fuel used by each type of vehicle for different modes of operation. As discussed in Chapter 23, the long trend to reduce operating costs via technology improvements while maintaining or improving other vehicle attributes is shown in Figure 23.1b. The fuel economy index (FEI), the product of vehicle mass and fuel economy in miles per gallon, controls for the fact that vehicle mass increased throughout the interval shown on the left-hand side of Figure 23.1b. This parameter, used to judge passenger cars for many decades, is a better indicator of powertrain efficiency than fuel economy alone. In the last decade the trend in the FEI, having the same units but measured at a differently specified test condition, is shown increasing at a similar rate. The recent trend was maintained, however, in a period of decreasing car mass and changing market demands for increased performance.

Research on the knocking properties of fuel in 1913 by Ricardo and later by Kettering provided the basis for many of the gains through 1970 (Amann, 1989). In recent times, applications of new computer technology to engine control, and applications of refined design techniques and new materials for weight reduction, have led to improved fuel economy (see Table E.2).

As the hedonic models of Atkinson and Halvorsen (1984, 1990) show,

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 728

TABLE E.1 Transportation Energy Use by Mode, 1987

     

Energy Use (trillion Btu)

Thousand Barrels per Day Crude Oil Equivalenta

Percentage of Total

Highwayb

16,213.5

7,658.1

73.6

Automobiles

8,862.9

4,186.2

40.3

Motorcycles

24.6

11.6

0.1

Buses

156.8

74.1

0.7

 

Transit

74.3

35.1

0.3

 

Intercity

21.6

10.22

c

 

School

60.9

8.8

0.3

Trucks

7,169.2

3,386.2

32.6

 

Light trucksd

4,031.9

1,904.4

18.3

 

Other trucks

3,137.3

1,481.8

14.2

Off-Highwayb (heavy duty)e

665.2

314.2

3.0

Construction

209.9

99.1

1.0

Farming

455.3

215.1

2.1

Nonhighwayb

4,490.6

2,121.0

20.4

Air

1,893.9

894.5

8.6

 

General aviationƒ

139.1

65.7

0.6

 

Domestic air carriers

1,564.2

738.8

7.1

 

International air carriers

190.6g

90.0

0.9

Water

1,326.0

626.3

6.0

 

Freight

1,095.7

517.5

5.0

   

Domestic trade

370.7

175.1

1.7

   

Foreign trade

725.0

342.4

3.3

   

Recreational boats

230.3

108.8

1.0

Pipeline

775.0

366.1

3.5

 

Natural gas

562.9

265.9

2.6

 

Crude petroleum

91.0

43.0

0.4

 

Petroleum product

67.4

31.8

0.3

 

Coal slurry

3.7

1.7

c

 

Water

50.0

23.6

0.2

(continued on page 729)

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 729

(Table E.1 continued from page 728)

       

Energy Use (trillion Btu)

Thousand Barrels per Day Crude Oil Equivalenta

Percentage of Total

Nonhighway—continued

     

Rail

495.7

234.1

2.2

 

Freighth

471.9

197.4

1.9

 

Passenger

77.8

36.7

0.3

   

Transit

41.0

19.4

0.2

   

Commuter rail

21.4

10.1

c

     

Intercity

15.4

7.3

c

Military Operations

647.3

305.7

2.9

 

TOTALi

22,016.6

10,399.0

100.0

aBased on British thermal unit (Btu) content of a barrel of crude oil.

bCivilian consumption only; military consumption shown separately.

cNegligible.

dTwo-axle, four-tire trucks.

e1985 data.

fAll aircraft in the U.S. civil air fleet except those operated under CFR parts 121 and 127 (i.e., air carriers larger than 30 seats or having a payload capacity of more than 7500 pounds). General aviation includes air taxis, commuter air carriers, and air travel clubs.

gThis figure represents an estimate of the energy purchase in the United States for international air carrier consumption.

hIncludes Class 1, 2, and 3 railroads.

iTotals may not include all possible uses of fuels for transportation (e.g., snowmobiles).

SOURCE: Davis et al. (1989).

consumers choose vehicles as a bundle of attributes that include style, comfort, performance, safety, fuel economy, and price. By definition, externalities associated with pollution and some safety issues are not a component of this bundle. Atkinson and Halvorsen calculate the demand elasticities for the attribute of personal safety, however, and their estimate of the revealed preference for this attribute provides a value of life ranging between $2.4

million and $6 million. Similarly, their results indicate that a significant number of consumers place a great value on performance.

Safety and performance are directly related to the mass and power of a vehicle, and fuel economy is inversely related to these variables. Although the literature on fuel economy (Bleviss, 1988) identifies vehicles having good performance (11 seconds, 0 to 60 mph) and exceptional fuel economy (81 highway miles or 63 city miles per gallon (mpg)), these prototypes are not subject to price or production constraints. Given a price constraint and the laws of physics, the consumer is forced to trade off desired attributes against one another.

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 730

TABLE E.2 Comparison of Vehicle Fuel Economy Technology Estimates

Technology

Office of Technology Assessment Fuel Economy Gain (percent)a

Domestic Industry Fuel Economy Gain (percent)a

Shackson and Leach Fuel Economy Gain (percent)b

Front wheel drive

12.0

 

5.0

 

Drivetrain efficiency

 

Nil

 
 

Package weight (1 TWC)

 

2.0

3.5

Four-cylinder/four-valve

7.5

3.7

Not considered

Four- or five-speed automatic CVT

7.5

3.4

15.0

Electronic transmission control

1.5

0.2

Not considered

Aerodynamics

3.4

3.0

6.0

Tires

0.5

0.5

2.0

Accessories

1.0

1.0

6.0

Engine improvements

     
 

Overhead camshaft

6.0

1.1

 
 

Roller cams

1.5

2.2

 
 

Low-friction rings/pistons

1.5

1.5

7.0

 

Throttle body fuel injection (over carburetor)

3.0

2.4

 
 

Multiport fuel injection (over TBI)

7.0

1.3

 

Technologies proposed in Shackson and Leach study now implemented

     
 

Lubricants

   

2.0

 

Design parameters

NA

NA

5.0

 

Manual transmission improvements

   

5.0

 

Material substitutions

   

13.0

NOTE: TWC = test weight class; NA = not applicable; CVT = continuously variable transmission; TBI = throttle body injection.

a Berger et al. (1990).

b Shackson and Leach (1980).

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 731

When forecasting cost-effective greenhouse gas reductions for future years, several uncertainties should be recognized. Figure E.1 makes clear that, given consumer preferences, the relative sizes of the automobile and lightduty truck markets are highly interactive and there has been a tendency to shift toward less efficient light-duty trucks. In addition, the number of person-miles traveled by each sector depends strongly on fuel price and other product attributes. On-road fuel economies are typically lower than those predicted by the EPA (Environmental Protection Agency) fuel economy test procedure as they depend on differences in highway speed, congestion, urban-rural travel mix, and average trip length. To provide a generous estimate of greenhouse gas reductions, a relatively low composite fuel economy baseline of 19.7 mpg will be used for the combined fleet of automobiles and light-duty trucks. Travel projections from the MOBILE3 Emission Model for the year 2000 were used (the MOBILE3 model is an emissions planning document that has been used by EPA to project vehicle miles traveled, emission levels, and grams per mile).

The CO2 emitted from the tailpipe of a vehicle must be adjusted for three additional global impacts. The first is the fact that other greenhouse gases such as CH4 and N2O often accompany CO2 emissions from the transportation sector. In addition, the processing and transportation of these fuels introduce greenhouse gases into the atmosphere.

In the case of gasoline, for every 311 g of CO2 emitted, approximately 78 g of CO2 equivalent is emitted as CH4 and 38 g as N2O. In addition,

image

FIGURE E.1 Components of change in light-duty vehicles.

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 732

CO2 emissions and venting during the processing and distribution of gasoline bring the total greenhouse gas emissions to between 455 and 507 g CO2 equivalent (see Tables 3 and 6 of Unnasch et al., 1989). The CO2 emission values in each table provided in this appendix are therefore multiplied by 1.55 to obtain CO2 equivalence for both the cost-effectiveness and the emission reduction axis in each figure.

Ten years ago, a fuel economy technology plan for automobiles and light-duty trucks was designed by the Energy Productivity Center of the Mellon Institute. The data from this study have been used in the calculations summarized in Table E.3 (Shackson and Leach, 1980) and plotted in Figure E.2 using the least-cost supply curve framework proposed by the Lawrence Berkeley Laboratory (Wright et al., 1981).

For each technology, an estimate of consumer purchase cost in 1990 dollars was used as the numerator in the cost-effectiveness ratio. Reductions in fuel consumption produced by each technology were used to estimate the corresponding 10-year benefit stream for the denominator (i.e., reduced greenhouse gas emissions in tons of CO2 equivalent).1 Because the benefit stream is directly proportional to vehicle usage, which falls rapidly with age, it is appropriate to discount the benefit terms for each interval between the time of purchase and the time benefits are realized. The effect of discounting is to depreciate future benefits and thereby raise the calculated cost-effectiveness values. For the cost-effectiveness calculations in this study, the CO2-equivalent emissions avoided were discounted at 3, 6, 10, and 30 percent, and were used in plotting the four curves in Figure E.2. The discount rates of 3, 6, and 10 percent represent a societal perspective, while 30 percent is closer to the discount rate chosen by a consumer when selecting a vehicle.

Because the technologies save fuel, the cost-effectiveness values were credited with $1.00/gal for discount rates of 3, 6, and 10 percent and $1.25/gal for the 30 percent rate—hence the negative values on the conservation supply curves.

The horizontal axis in Figure E.2 represents an estimate of the cumulative annual reductions in greenhouse gas emissions as though each device were employed in the 1989 fleet. These quantities were not discounted (see Table E.3). The 24 technologies analyzed by Shackson and Leach are ordered by their cost-effectiveness in Table E.3—hence the monotonic increase in the curve in Figure E.2.

As mentioned above, many of these most cost-efficient technologies were introduced, in part, during the 1975 to 1982 vehicle production era. The most expensive were not offered on the market by the industry. As the industry moved along the learning curve throughout the decade, old technologies became available at lower cost, and as the cost of fuel increased, new technologies became attractive to the consumer. Furthermore, these

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 733

TABLE E.3 Automobile and Light Truck Data (Shackson and Leach, 1980)

Technologya

Efficiency Gain (%)

Cost to Consumer (1979 $)

Cost to Consumer (1990 $)

Cost Effectiveness ($/%)

Penetration (%)

Cumulative Improvement (%)

Cumulative Cost (1990 $)

Fleet Fuel Economy (mpg)

1. Weight Reduction

3.50

0.00

0.000

0.000

100.00

3.50

0.00

20.39

2. Aerodynamic Design

4.00

0.00

0.000

0.000

100.00

7.50

0.00

21.18

3. Lubrication

2.00

10.00

17.906

8.953

100.00

9.50

17.91

21.57

4. Access. Ld.

6.00

50.00

89.532

14.922

100.00

15.50

107.44

22.75

5. Red. Roll.

2.00

20.00

35.813

17.906

100.00

17.50

143.25

23.15

6. Impr. Man.

5.00

50.00

89.532

17.906

10.00

18.00

152.20

23.25

7. Front Wheel Drive

5.00

50.00

89.532

17.906

80.00

22.00

223.83

24.03

8. Des. Param.

5.00

50.00

89.532

17.906

70.00

25.50

286.50

24.72

9. TorqLoc.

5.00

60.00

107.438

21.488

40.00

27.50

329.48

25.12

10. Aero. Adds.

2.00

30.00

53.719

26.860

60.00

28.70

361.71

25.35

11. Eng. Des.

5.00

75.00

134.298

26.860

20.00

29.70

388.57

25.55

12. Material Substitution

1.50

25.00

44.766

29.844

100.00

31.20

433.33

25.85

13. 4Sp. Auto.

10.00

190.00

340.220

34.022

90.00

40.20

739.53

27.62

14. Material Substitution

8.00

200.00

358.127

44.766

100.00

48.20

1,097.66

29.20

15. Material Substitution

3.50

100.00

179.063

51.161

100.00

51.70

1,276.72

29.88

16. DISC

20.00

600.00

1,074.380

53.719

15.00

54.70

1,437.88

30.48

17. Engine Design

5.00

160.00

286.501

57.300

100.00

59.70

1,724.38

31.46

18. Vehicle Downsizing

12.00

400.00

716.253

59.688

100.00

71.70

2,440.63

33.82

19. Oper. Par.

5.00

175.00

313.361

62.672

100.00

76.70

2,753.99

34.81

20. Vehicle Downsizing

4.00

400.00

716.253

179.063

100.00

80.70

3,470.25

35.60

21. Turbocharging

5.00

650.00

1,163.912

232.782

32.00

82.30

3,842.70

35.91

(continued on page 734)

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 734

(Table E.3 continued from 733)

Technologya

Annual Fuel Savings (million gallons)

Annual Savings (Million Tons CO2 Equivalent)

3% (Marginal Tons CO2 Equivalent)

3% ($/ton CO2 Equivalent) $1.00 credit

6% (Marginal Tons CO2 Equivalent)

6% ($/ton CO2 Equivalent) $1.00 credit

10% (Marginal Tons CO2 Equivalent)

1. Weight Reduction

3,243.08

44.99

2.20

-72.08

1.94

-72.08

1.67

2. Aerodynamic Design

6,690.87

92.82

2.34

-72.08

2.06

-72.08

1.77

3. Lubrication

8,320.31

115.42

1.11

-55.88

0.98

-53.73

0.84

4. Access. Ld.

12,870.04

178.54

3.09

-43.07

2.72

-39.21

2.34

5. Red. Roll.

14,283.36

198.15

0.96

-34.73

0.85

-29.76

0.73

6. Impr. Man.

14,629.20

202.94

0.23

-33.92

0.21

-28.84

0.18

7. Front Wheel Drive

17,293.90

239.91

1.81

-32.46

1.60

-27.18

1.37

8. Des. Param.

19,486.17

270.32

1.49

-29.94

1.31

-24.33

1.13

9. TorqLoc.

20,684.86

286.95

0.81

-19.23

0.72

-12.20

0.62

10. Aero. Adds.

21,386.19

296.68

0.48

-4.33

0.42

4.68

0.36

11. Eng. Des.

21,960.72

304.65

0.39

-3.17

0.34

6.01

0.30

12. Material Substitution

22,806.09

316.38

0.57

5.98

0.51

16.37

0.43

13. 4Sp. Auto.

27,498.45

381.47

3.18

24.11

2.81

36.92

2.41

14. Material Substitution

31,190.97

432.70

2.50

70.89

2.21

89.92

1.90

15. Material Substitution

32,683.99

453.41

1.01

104.72

0.89

128.26

0.77

16. DISC

33,909.95

470.42

0.83

121.70

0.73

147.50

0.63

17. Engine Design

35,850.85

497.34

1.32

145.52

1.16

174.49

1.00

18. Vehicle Downsizing

40,047.83

555.56

2.85

179.50

2.51

212.99

2.16

19. Oper. Par.

41,628.32

577.49

1.07

220.20

0.95

259.10

0.81

20. Vehicle Downsizing

42,829.74

594.16

0.81

806.78

0.72

923.77

0.62

21. Turbocharging

43,295.55

600.62

0.32

1,106.65

0.28

1,263.55

0.24

(continued on page 735)

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 735

(Table E.3 continued from page 734)

Technologya

10% ($/ton CO2 Equivalent) $1.00 credit

30% (Marginal Tons CO2 Equivalent)

30% ($/ton CO2 Equivalent) $1.25 credit

6% Equivalent Fuel Cost ($/gallon)

30% Equivalent Fuel Cost ($/gallon)

1. Weight Reduction

-72.08

0.49

-90.10

0.00

0.00

2. Aerodynamic Design

-72.08

0.52

-90.10

0.00

0.00

3. Lubrication

-50.70

0.25

-17.31

0.16

0.65

4. Access. Ld.

-33.79

0.69

40.24

0.29

1.17

5. Red. Roll.

-22.77

0.21

77.74

0.38

1.50

6. Impr. Man.

-21.70

0.05

81.38

0.39

1.53

7. Front Wheel Drive

-19.77

0.40

87.94

0.40

1.59

8. Des. Param.

-16.45

0.33

99.26

0.43

1.69

9. TorqLoc.

-2.31

0.18

147.38

0.54

2.13

10. Aero. Adds.

17.35

0.11

214.32

0.69

2.72

11. Eng. Des.

18.90

0.09

219.57

0.70

2.77

12. Material Substitution

30.97

0.13

260.66

0.79

3.14

13. 4Sp. Auto.

54.91

0.71

342.14

0.98

3.87

14. Material Substitution

116.66

0.56

552.33

1.45

5.75

15. Material Substitution

161.32

0.23

704.33

1.79

7.11

16. DISC

183.74

0.19

780.64

1.97

7.79

17. Engine Design

215.19

0.29

887.67

2.21

8.75

18. Vehicle Downsizing

260.04

0.63

1,040.34

2.55

10.12

19. Oper. Par.

313.77

0.24

1,223.21

2.96

11.75

20. Vehicle Downsizing

1,088.13

0.18

3,853.92

8.91

35.34

21. Turbocharging

1,484.00

0.07

5,206.33

11.95

47.40

(continued on page 736)

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 736

(Table E.3 continued from page 735)

NOTES: Cost in 1990 = Cost in 1979 × Consumer Price Index (1990)/CPI (1979) = 130/72.6 × D (cost to consumer in 1979).

Cumulative improvement = the sum of (penetrations × efficiency gains).

Cumulative cost = previous cost + new component cost × %penetration.

Fuel economy = (1 + %improvement) × 19.7.

Annual fuel savings = (1,889.28 billion miles traveled in 2000) × [(1/19.7) - (1/mpg)].

Tons of CO2 equivalent avoided = 0.00895 × 1.55 × annual fuel savings.

At 3%, marginal tons of CO2 equivalent for change in mpg = .00895 × 1.55 × ten years of vehicle miles traveled (discounted at 3%) × delta reciprocal mpg = .00895 × 1.55 × 92383 × ((1/mpg(i) - 1/mpg (i - 1)).

At 6%, marginal tons of CO2 equivalent for change in mpg = .00895 × 1.55 × ten years of vehicle miles traveled (discounted at 6%) × delta reciprocal mpg = .00895 × 1.55 × 81530 × ((1/mpg(i) - 1/mpg(i - 1)).

At 10%, marginal tons of CO2 equivalent for change in mpg = .00895 × 1.55 × ten years of vehicle miles traveled (discounted at 10%) × delta reciprocal mpg = .00895 × 1.55 × 69980 × ((1/mpg(i) - 1/mpg(i - 1)).

At 30%, marginal tons of CO2 equivalent for change in mpg = .00895 × 1.55 × ten years of vehicle miles traveled (discounted at 30%) × delta reciprocal mpg = .00895 × 1.55 × 20560 × ((1/mpg(i) - 1/mpg(i - 1)).

Corresponding $/ton of CO2 = marginal cost/marginal tons of CO2 equivalent - fuel credit @ $1.00 per gallon = (change in cumulative cost/marginal tons of CO2 equivalent) - 111.73/1.55.

aAccess. Ld. = accessory load reduction; Red. Roll. = reduced rolling resistance; Impr. Man. = improved manual transmission; Des. Param. = engine design parameters; TorqLoc=torque converter lock-up; Aero. Adds = aerodynamic add-on equipment; Eng. Des. = engine design parameters; 4Sp. Auto. = four-speed automatic with torque converter lock-up; DISC = diesel and direct injected stratified charge engines; and Oper. Par. = engine operating parameters.

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 737

image

FIGURE E.2 Annual CO2 reduction (Shackson and Leach (1980) analysis).

technologies became attractive to larger segments of the market and their penetration was increased.

Such a portfolio of technologies, similar to that proposed by Shackson and Leach, has been proposed by DOE (Difiglio et al., 1990). The bulk of the fuel economy gains proposed by DOE are achieved by introducing known technologies to most models in the fleet.

While cautioning the reader on the firmness of the benefits and costs of the DOE portfolio of technologies, Ledbetter and Ross (1989) have also used a supply curve framework for the analysis of these data. The conservation supply curve data (utilizing the cost and fuel economy values for 17 technologies in Table 5 of Ledbetter and Ross) have been used to generate the curve in Figure E.3 for the four different perspectives of this study (see Table E.4).

Comparison of the cost-effectiveness values in Figures E.2 and E.3 shows significant differences. The differences do not result as much from differences in the technology portfolios as from differences in the estimates of the costs and benefits of individual technologies. The disagreement between those who design and build cars and those who have generated the DOE data lies in the estimation, measurement, and aggregation of the fuel economy gain made possible by the technologies themselves when their

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 738

image

FIGURE E.3 Annual CO2 reduction (Ledbetter and Ross (1989) analysis).

interactions are taken into account (see Berger et al., 1990). Industry analyses suggest that the potential for fuel economy improvement solely through diffusion of existing technology is less than one-half that predicted by DOE (see estimates of technology gains listed in Table E.2).

Specific differences in estimates for engine efficiencies are driven primarily by two factors. The first has to do with performance parameters chosen by engineers doing the analysis. Although fuel economy at constant horsepower seems like a reasonable criterion for comparison, it turns out that domestic consumers are more interested in vehicles that deliver torque at low engine speed. The newer engines being proposed by DOE for introduction will deliver significant gains at constant horsepower; however, the gains are diminished when compared at constant torque.

The second factor involving engines has to do with how technologies are bundled and then labeled. While one technology at a time can produce a gain of a certain magnitude, systems compound in a way that is not always additive (Berger et al., 1990).

This phenomenon has been demonstrated for vehicles on the market in a statistical analysis of EPA test data from virtually all of the cars in the model year 1988 and 1989 fleets (Bussmann, 1989). The statistical study

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 739

TABLE E.4 Automobile and Light Truck Data, Department of Energy (Ledbetter and Ross, 1990)

Technologya

Efficiency Gain

Cost to Consumer (1987 $)

Cost to Consumer (1990 $)

Cost Effective ($/%)

Penetration (%)

Cumulative Improvement (%)

Cumulative Cost (1990 $)

Fleet Fuel Economy (mpg)

1. 4V

6.80

0.00

0.00

0.00

100.00

6.80

0.00

21.04

2. Trans Man

10.00

40.00

45.77

4.58

75.00

14.30

34.33

22.52

3. AERO

4.60

27.00

30.90

6.72

85.00

18.21

60.59

23.29

4. RCF

1.50

11.00

12.59

8.39

37.00

18.77

65.25

23.40

5. Idle-off

11.00

80.00

91.55

8.32

75.00

27.02

133.91

25.02

6. IVC

10.00

80.00

91.55

9.15

75.00

34.52

202.58

26.50

7. Access

1.70

15.00

17.17

10.10

80.00

35.88

216.31

26.77

8. Adv. Fric.

4.00

40.00

45.77

11.44

80.00

39.08

252.93

27.40

9. CVT

4.70

50.00

57.22

12.17

45.00

41.19

278.68

27.81

10. Lub/Tire

1.00

11.00

12.59

12.59

100.00

42.19

291.26

28.01

11. TCLU

3.00

35.00

40.05

13.35

15.00

42.64

297.27

28.10

12. OHC

6.00

74.00

84.68

14.11

69.00

46.78

355.70

28.92

13. FWD

10.00

150.00

171.65

17.17

23.00

49.08

395.18

29.37

14. MPFI

3.50

56.00

64.08

18.31

56.00

51.04

431.07

29.75

15. Wt. Red.

6.60

130.00

148.77

22.54

85.00

56.65

557.52

30.86

16. 5AOD

4.70

100.00

114.44

24.35

40.00

58.53

603.30

31.23

17. Tires II

0.50

13.00

14.88

29.75

36.00

58.71

608.65

31.27

(continued on page 740)

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 740

(Table E.4 continued from page 739)

Technologya

Annual Fuel Savings (million gallons)

Annual Savings (Million Tons CO2 Equivalent)

3% (Marginal Tons CO2 Equivalent)

3% ($/ton CO2 Equivalent) $1.00 credit

6% (Marginal Tons CO2 Equivalent)

6% ($/ton CO2 Equivalent) $1.00 credit

10% (Marginal Tons CO2 Equivalent)

10% ($/ton CO2 Equivalent) $1.00 credit

1. 4V

6,106.15

84.71

4.14

-72.08

3.66

-72.08

3.14

-72.08

2. Trans Man

11,998.31

166.45

4.00

-63.49

3.53

-62.35

3.03

-60.74

3. AERO

14,773.58

204.95

1.88

-58.13

1.66

-56.28

1.43

-53.67

4. RCF

15,152.71

210.21

0.26

-53.97

0.23

-51.56

0.19

-48.18

5. Idle-off

20,397.65

282.97

3.56

-52.79

3.14

-50.22

2.70

-46.61

6. IVC

24,607.49

341.37

2.86

-48.04

2.52

-44.84

2.16

-40.34

7. Access

25,321.09

351.27

0.48

-43.72

0.43

-39.94

0.37

-34.63

8. Adv. Fric.

26,945.11

373.80

1.10

-38.84

0.97

-34.42

0.83

-28.20

9. CVT

27,978.08

388.13

0.70

-35.34

0.62

-30.45

0.53

-23.57

10. Lub/Tire

28,455.79

394.75

0.32

-33.24

0.29

-28.07

0.25

-20.00

11. TCLU

28,668.57

397.70

0.14

-30.46

0.13

-24.92

0.11

-17.13

12. OHC

30,564.93

424.01

1.29

-26.66

1.14

-20.61

0.97

-12.12

13. FWD

31,572.96

438.00

0.68

-14.35

0.60

-6.66

0.52

4.14

14. MPFI

32,407.74

449.58

0.57

-8.71

0.50

-0.27

0.43

11.50

15. Wt. Red.

34,681.64

481.12

1.54

9.90

1.36

20.81

1.17

36.14

16. 5AOD

35,407.66

491.19

0.49

20.86

0.43

33.23

0.37

50.62

17. Tires II

35,476.26

492.14

0.05

42.99

0.04

58.31

0.04

79.83

(continued on page 741)

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 741

(Table E.4 continued from page 740)

Technologya

30% (Marginal Tons CO2 Equivalent)

30% ($/ton CO2 Equivalent) $1.25 credit

6% Equivalent Fuel Cost ($/gallon)

30% Equivalent Fuel Cost ($/gallon)

1. 4V

0.92

-90.10

0.00

0.00

2. Trans Man

0.89

-51.51

0.35

0.09

3. AERO

0.42

-27.42

0.56

0.14

4. RCF

0.06

-8.73

0.73

0.18

5. Idle-off

0.79

-3.39

0.78

0.20

6. IVC

0.64

17.93

0.97

0.24

7. Access

0.11

37.36

1.14

0.29

8. Adv. Fric.

0.25

59.26

1.34

0.34

9. CVT

0.16

75.01

1.48

0.37

10. Lub/Tire

0.07

84.44

1.56

0.39

11. TCLU

0.03

96.92

1.67

0.42

12. OHC

0.29

113.99

1.83

0.46

13. FWD

0.15

169.33

2.32

0.59

14. MPFI

0.13

194.66

2.55

0.64

15. Wt. Red.

0.34

278.26

3.30

0.83

16. 5AOD

0.11

327.53

3.74

0.94

17. Tires II

0.01

426.96

4.63

1.17

a4V = four valves per cylinder engines, Trans Man = aggressive transmission management (group 2 only), AERO = aerodynamic improvements, RCF = roller cam followers, Idle-off= idle off (group 2 only), IVC = intake valve control, Access = improved accessories, including electric power steering, Adv. Fric. = engine friction reduction, CVT = continuously variable transmission, Lub/Tire = improved lubrication and tires, TCLU = torque converter lockup (group 2 only), OHC = overhead cam engine, FWD = front wheel drive, MPFI = multi-point fuel injection, Wt. Red. = weight reduction, 5AOD = five-speed automatic overdrive transmission, Tires II = advanced tires (improvements beyond that included in LUB/T).

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 742

predicts a 5.4 percent fuel economy gain with technologies for which the Office of Technology Assessment and DOE predict a 17.3 percent gain. The major difference between these studies is that the 17.3 percent estimate is made by summing the gains from 12 efficiency technologies considered individually and the 5.4 percent estimate is made by a model that considers the system of these same technologies.

Other uncertainties in many parameter estimates lead to significant differences in the cost-effectiveness values in Figures E.2 and E.3. In addition to differing estimates for fuel economy gains, if one allows for technology interactions, differing estimates of consumer preferences and differing methods of allocating costs could underlie the observed uncertainties.

Heavy-Duty Trucks

Approximately 20 percent of the fuel expended on the U.S. highway system is utilized by heavy trucks and other heavy-duty vehicles, as indicated in Table E.1. The opportunities to conserve fuel and minimize emissions parallel those for light-duty vehicles and light-duty trucks. The method of analysis in this section parallels the methods used in the preceding section. Despite the fact that the data base for these vehicles is relatively meager, it will be possible to create conservation supply curves for three important categories of heavy vehicles.

In a study prepared for the Motor Vehicle Manufacturers Association by Energy and Environmental Analysis (1984), costs and efficiency gains for several technologies were presented for the categories ''light-heavy," "medium-heavy," and "heavy-heavy," corresponding to Classes 2B-5, Classes 6–8A, and Class 8 heavy trucks. In most cases the fuel savings and the equipment costs were tabulated directly by analysts from Energy and Environmental Analysis. In others, the level of market penetration corresponding to a break-even mileage for a 2-year payback on the investment cost was provided. Because histograms of the fraction of vehicles traveling each mileage interval were also given for each category, it was possible to calculate the equipment cost using the formula:

Fuel savings = [VMT × FP] × [1 - (1/(1 + f))] × [1/FE0]

where VMT = vehicle miles traveled, FP = fuel price, FE0 = base fuel economy before addition of a technology, and f = the fractional improvement in fuel economy. The results of this calculation and other data tabulated in the EEA analysis provide the basis for Tables E.5, E.6, and E.7.

The supply curves resulting from these calculations are presented in Figures E.4, E.5, and E.6. The panel has found no estimates to compare with this analysis for heavy trucks to demonstrate the uncertainties that surely underlie these results.

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 743

As is evident from these figures, the tons of CO2 saved and the cost-effectiveness values vary dramatically for the three categories of trucks.

Domestic Air Carriers

The third most significant component of transportation energy use is domestic airlines, as indicated in Table E.1. The most advanced new jet aircraft are far more efficient than older aircraft still in service. Carlsmith et al. (1990) estimate that on a 1000-mile trip, aircraft produced in the 1960s are capable of between 40 and 50 seat-mpg, while the new Boeing 757 and 767 now in service have a fuel efficiency of 70 seat-mpg. Improvements now being introduced arise from a combination of higher bypass ratio engines, increased compressor and turbine efficiencies, and more energy-efficient flight planning and operations. Like highway vehicles, aircraft can also benefit from weight reduction and better aerodynamics.

Although some estimate efficiencies approaching 130 to 150 seat-mpg from planned vehicles utilizing fanjets along with other new technologies, personal communication with a participant in that industry would attribute a 20 percent gain to the fanjet technology alone. This same source estimates that an approximately $20 billion investment will be necessary in research, development, training, tooling, and certification for retrofitting the existing fleet with new fanjet technology.

Component costs per vehicle are estimated at $8 million. If a return on investment of 15 percent for retrofitting half of the 4000 transport vehicles in the fleet with this technology, and a 20 percent fuel economy gain, are assumed, 0.016 Gt/yr per year of CO2 reduction is possible at a cost of $300/t CO2.

Again, the estimate is based on several unverified assumptions and extrapolations that call for great caution.

Summary

Uncertainties dominate the content of much of this appendix. The first uncertainty is due to disagreements among technologists as to the costs and benefits likely to accrue from a portfolio of devices at various stages of development or implementation. This is revealed in the wide range of values in the conservation supply curves derived above from the Shackson and Leach (1980), Difiglio et al. (1990), and Ledbetter and Ross (1989) data sets.

The second uncertainty relates to disagreements among social scientists as to the relative impact of fuel prices and mandated fuel economy levels on the supply of fuel-efficient vehicles. This is revealed when comparing the results from econometric analyses by Godek (1990), Greene (1989), and

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 744

TABLE E.5 Light-Heavy Truck Data (Energy and Environmental Analysis, Inc., 1984)

Technology

Efficiency Gain

Cost to Consumer (1984 $)

Cost to Consumer (1990 $)

Cost-Effectiveness ($/%)

Penetration (%)

Cumulative Improvement (%)

Cumulative Cost (1990 $)

Fleet Fuel Economy (mpg)

1 Accsrys

1.00

10.00

12.51

12.51

100.00

1.00

12.51

12.52

2 Lubric.

1.50

15.00

18.77

12.51

100.00

2.50

31.28

12.71

3 Wt. Red. I

6.60

187.00

233.97

35.45

50.00

5.80

148.27

13.12

4 Wt. Red. II

6.60

187.00

233.97

35.45

50.00

9.10

265.26

13.53

5 Elec Trans

6.00

193.00

241.48

40.25

50.00

12.10

386.00

13.90

6 Radials

8.00

690.00

863.33

107.92

50.00

16.10

817.66

14.40

7 Aerody I

3.40

400.00

500.48

147.20

50.00

17.80

1,067.90

14.61

8 Aerody II

3.40

400.00

500.48

147.20

50.00

19.50

1,318.14

14.82

Technology

Annual Fuel Savings (million gallons)

Annual Savings (million tons CO2 Equivalent)

3% (Marginal tons CO2 Equivalent)

3% ($/ton CO2 Equivalent) $1.00 credit

6% (Marginal tons CO2 Equivalent)

6% ($/ton CO2 Equivalent) $1.00 credit

10% (Marginal tons CO2 Equivalent)

10% ($/ton CO2 Equivalent) $1.00 credit

1 Accsrys

49.60

0.69

1.02

-59.86

0.90

-58.23

0.78

-55.94

2 Lubric.

122.19

1.70

1.50

-59.55

1.32

-57.88

1.13

-55.54

3 Wt. Red. I

274.63

3.81

3.15

-34.89

2.78

-29.94

2.38

-22.98

4 Wt. Red. II

417.86

5.80

2.95

-32.49

2.61

-27.22

2.24

-19.82

5 Elec Trans

540.74

7.50

2.54

-24.46

2.24

-18.12

1.92

-9.21

6 Radials

694.71

9.64

3.18

63.81

2.80

81.90

2.41

107.31

7 Aerody I

756.98

10.50

1.28

122.70

1.13

148.63

0.97

185.06

8 Aerody II

817.48

11.34

1.25

128.41

1.10

155.10

0.95

192.59

(continued on page 745)

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 745

(Table E.5 continued from page 744)

Technology

30% (Marginal tons CO2 Equivalent)

30% ($/ton CO2 Equivalent) $1.25 credit

1 Accsrys

0.23

-35.16

2 Lubric.

0.33

-33.79

3 Wt. Red. I

0.70

77.03

4 Wt. Red. II

0.66

87.80

5 Elec Trans

0.56

123.89

6 Radials

0.71

520.51

7 Aerody I

0.29

785.14

8 Aerody II

0.28

810.77

NOTES: Baseline fuel economy - 12.4 mpg. All equations and notes the same as in Table E.3 except for the following:

Cost in 1990 - cost in 1984 × CPI (1990)/CPI(1984) - 130/103.9

Fleet fuel economy - 12.4 × (1 + cumulative improvement/100)

Fuel saved - (62120 million miles traveled in 2000) × (12.4 - 1/mpg), estimate for light trucks in Mobile 3

Marginal tons of CO2 @ 3% - 92383 miles × .00895 × 1.55 × (1/mpg(i) - 1/mpg(i - 1))

Marginal tons of CO2 @ 6% - 81530 miles × .00895 × 1.55 × (1/mpg(i) - 1/mpg(i - 1))

Marginal tons of CO2 @ 10% - 69980 miles × .00895 × 1.55 × (1/mpg(i) - 1/mpg(i - 1))

Marginal tons of CO2 @ 30% - 20560 miles × .00895 × 1.55 × (1/mpg(i) - 1/mpg(i - 1))

Truck data taken from Table 3-2 of Energy and Environmental Analysis (EEA) (1984). When cost-effectiveness data were not in the EEA report, the mileage at either 50% or 90% of the vehicles providing "cost-effectiveness" was used from the equation on page 3-1 of the EEA report. This "SAVINGS" was then considered at least as great as the cost of technology.

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 746

TABLE E.6 Medium-Heavy Truck Data (Energy and Environmental Analysis, Inc., 1984)

Technology

Efficiency Gain

Cost to Consumer (1979 $)

Cost to Consumer (1990 $)

Cost Effectiveness ($/%)

Penetration (%)

Cumulative Improvement (%)

Cumulative Cost (1990 $)

Fleet Fuel Economy (mpg)

1 FanDrive

4.00

142.00

177.67

44.42

100.00

4.00

177.67

9.98

2 Wt. Red.

4.00

142.00

177.67

44.42

100.00

8.00

355.34

10.37

3 Body Aero

4.00

142.00

177.67

44.42

100.00

12.00

533.01

10.75

4 Access.

2.00

72.20

90.34

45.17

100.00

14.00

623.35

10.94

5 Lubric.

1.50

55.20

69.07

46.04

100.00

15.50

692.42

11.09

6 AeroDev.

6.00

400.00

500.48

83.41

15.00

16.40

767.49

11.17

7 Adv.Rad

8.00

690.00

863.33

107.92

30.00

18.80

1,026.49

11.40

8 ShiftInd.

5.00

762.00

953.42

190.68

30.00

20.30

1,312.51

11.55

9 Spd.Cont.

6.00

1,360.00

1,701.64

283.61

15.00

21.20

1,567.76

11.64

Technology

Annual Fuel Savings (million gallons)

Annual Savings (million tons CO2 Equivalent)

3% (Marginal tons CO2 Equivalent)

3% ($/ton CO2 Equivalent) $1.00 credit

6% (Marginal tons CO2 Equivalent)

6% ($/ton CO2 Equivalent) $1.00 credit

10% (Marginal tons CO2 Equivalent)

10% ($/ton CO2 Equivalent) $1.00 credit

1 FanDrive

186.58

2.59

10.27

-54.79

9.06

-52.48

7.78

-49.24

2 Wt. Red.

359.34

4.98

9.51

-53.40

8.39

-50.91

7.20

-47.42

3 Body Aero

519.75

7.21

8.83

-51.96

7.79

-49.28

6.69

-45.52

4 Access.

595.74

8.26

4.18

-50.48

3.69

-47.61

3.17

-43.57

5 Lubric.

651.01

9.03

3.04

-49.38

2.68

-46.35

2.30

-42.11

6 AeroDev.

683.48

9.48

1.79

-30.08

1.58

-24.49

1.35

-16.64

7 Adv.Rad

767.67

10.65

4.63

-16.19

4.09

-8.75

3.51

1.70

8 ShiftInd.

818.59

11.36

2.80

29.98

2.47

43.57

2.12

62.66

9 Spd.Cont.

848.53

11.77

1.65

82.79

1.45

103.41

1.25

132.37

(continued on page 747)

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 747

(Table E.6 continued from page 746)

Technology

30% (Marginal tons CO2 Equivalent)

30% ($/tons CO2 Equivalent) $1.25 credit

1 FanDrive

2.29

-12.36

2 Wt. Red.

2.12

-6.14

3 Body Aero

1.96

0.31

4 Access.

0.93

6.95

5 Lubric.

0.68

11.92

6 AeroDev.

0.40

98.62

7 Adv.Rad

1.03

161.04

8 ShiftInd.

0.62

368.52

9 Spd.Cont.

0.37

605.80

NOTES: Baseline fuel economy = 9.6. All equations and notes the same as in Table E.3 except for the following:

Cost in 1990 = Cost in 1984 × CPI (1990)/CPI (1984) = 130/103.9

Fleet Fuel Economy = 9.6 (1 + Cumulative Improvement/100)

Fuel saved = (46570 million miles traveled in 2000) × (1/9.6 - 1/mpg), estimate for Medium truck in Mobile 3

Marginal tons of CO2 @ 3% = 2 × 92383 miles × .00895 × 1.55 (1/mpg(i) - 1/mpg(i - 1))

Marginal tons of CO2 @ 6% = 2 × 81530 miles × .00895 × 1.55 (1/mpg(i) - 1/mpg(i - 1))

Marginal tons of CO2 @ 10% = 2 × 69980 miles × .00895 × 1.55 (1/mpg(i) - 1/mpg(i - 1))

Marginal tons of CO2 @ 30% = 2 × 20560 miles × .00895 × 1.55 (1/mpg(i) - 1/mpg(i - 1))

Truck data taken from Table 3-2 of Energy and Environmental Analysis (EEA) (1984). When cost-effectiveness data were not in the EEA report, the mileage at either 50% or 90% of vehicles providing "cost-effectiveness" was used from the equation on page 3-1 of the EEA report. This "SAVINGS" was then considered at least as great as the cost of technology.

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 748

TABLE E.7 Heavy-Heavy Truck Data (Energy and Environmental Analysis, Inc., 1984)

Technology

Efficiency Gain

Cost to Consumer (1979 $)

Cost to Consumer (1990 $)

Cost Effectiveness ($/%)

Penetration (%)

Cumulative Improvement (%)

Cumulative Cost (1990 $)

Fleet Fuel Economy (mpg)

1 BodyAero

9.00

540.00

675.65

75.07

100.00

9.00

675.65

7.29

2 FanDrives

4.00

252.00

315.30

78.83

100.00

13.00

990.95

7.56

3 Drivetrn

3.00

190.00

237.73

79.24

100.00

16.00

1,228.68

7.76

4 Access.

2.00

128.00

160.15

80.08

100.00

18.00

1,388.84

7.89

5 Lubric.

1.50

97.00

121.37

80.91

100.00

19.50

1,510.20

7.99

6 AeroDev.

6.00

400.00

500.48

83.41

58.00

22.98

1,800.48

8.23

7 Radials

6.00

1,080.00

1,351.30

225.22

70.00

27.18

2,746.39

8.51

8 Spd. Cont.

5.00

1,335.00

1,670.36

334.07

50.00

29.68

3,581.57

8.68

9 Adv. Rad.

6.00

2,070.00

2,589.99

431.67

70.00

33.88

5,394.56

8.96

Technology

Annual Fuel Savings (million gallons)

Annual Savings (million tons CO2 Equivalent)

3% (Marginal tons CO2 Equivalent)

3% ($/ton CO2 Equivalent) $1.00 credit

6% (Marginal tons CO2 Equivalent)

6% ($/ton CO2 Equivalent) $1.00 credit

10% (Marginal tons CO2 Equivalent)

10% ($/ton CO2 Equivalent) $1.00 credit

1 BodyAero

1,181.39

16.39

98.33

-65.21

83.76

-64.02

71.89

-62.69

2 FanDrives

1,646.04

22.83

38.68

-63.93

32.94

-62.51

28.28

-60.93

3 Drivetrn

1,973.51

27.38

27.26

-63.36

23.22

-61.84

19.93

-60.15

4 Access.

2,182.56

30.28

17.40

-62.88

14.82

-61.28

12.72

-59.49

5 Lubric.

2,334.77

32.39

12.67

-62.50

10.79

-60.84

9.26

-58.98

6 AeroDev.

2,673.57

37.09

28.20

-61.79

24.02

-60.00

20.62

-58.00

7 Radials

3,057.79

42.42

31.98

-42.51

27.24

-37.36

23.38

-31.63

8 Spd. Cont.

3,274.67

45.43

18.05

-25.82

15.38

-17.77

13.20

-8.80

9 Adv. Rad.

3,620.80

50.23

28.81

-9.15

24.54

1.80

21.06

13.99

(continued on page 749)

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 749

(Table E.7 continued from page 748)

Technology

30% (Marginal tons CO2 Equivalent)

30% ($/ton CO2 Equivalent) $1.25 credit

1 BodyAero

21.12

-59.12

2 FanDrives

8.31

-52.15

3 Drivetrn

5.85

-49.50

4 Access.

3.74

-47.26

5 Lubric.

2.72

-45.50

6 AeroDev.

6.06

-42.18

7 Radials

6.87

47.60

8 Spd. Cont.

3.88

125.29

9 Adv. Rad.

6.19

202.87

NOTES: Average fuel economy = 6.69 mpg. All equations and notes the same as Table D.3 except for the following:

Cost in 1990 = Cost in 1984 × CPI (1990)/CPI(1984)-130/103.9

Fleet fuel economy = 6.69(1 + cumulative improvement/100)

Fuel saved = (95720 million miles traveled in 2000) × (1/6.69-1/mpg), estimate for heavy trucks in Mobile 3

Marginal Tons of CO2 @ 3% = 6 × 92383 miles × .00895 × 1.55 × (1/mpg(i)-1/mpg(i-1))

Marginal Tons of CO2 @ 6% = 6 × 81530 miles × .00895 × 1.55 × (1/mpg(i)-1/mpg(i-1))

Marginal Tons of CO2 @ 10% = 6 × 69800 miles × .00895 × 1.55 × (1/mpg(i)-1/mpg(i-1))

Marginal Tons of CO2 @ 30% = 6 × 20560 miles × .00895 × 1.55 × (1/mpg(i)-1/mpg(i-1))

Truck data taken from Table 3-1 of Environmental and Energy Analysis (EEA) (1984). When cost-effectiveness data were not in the EEA report, the mileage at either 50% or 90% of vehicles providing "cost-effectiveness" was used from the equation on page 3-1 of the EEA report. This "SAVINGS" was then considered at least as great as the cost of technology.

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 750

image

FIGURE E.4 Annual CO2 reduction (light-heavy trucks).

image

FIGURE E.5 Annual CO2 reduction (medium-heavy trucks).

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 751

image

FIGURE E.6 Annual CO2 reduction (heavy-heavy trucks).

Leone and Parkinson (1990), which differ on the relative importance of market and regulatory mechanisms.

Cross-sectional data sets for several nations are now emerging to provide additional insight into consumer preferences (see Schipper, 1991). Similarly, the wide range of values in the conservation supply curves based on the Shackson and Leach and the Ledbetter and Ross studies may well be reconciled with these emerging data. In light of these remaining uncertainties, it is interesting to examine the automobile and light truck conservation supply curves in the context of fuel prices and consumer preference for new car fuel economy.

To examine the interactions of consumer choice and technology, the panel has plotted conservation supply information in a format that allows a comparison with consumer decision making. Results from Tables E.3, E.4, and E.8 derived from Shackson and Leach (1980), Ledbetter and Ross (1989), and Difiglio et al. (1990), respectively, are plotted in Figure E.7. Values

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 752

TABLE E.8 A Supply Curve for Light-Duty Vehicles Fuel Economy Technologies (Difiglio et al., 1990)

Technology Optionsa

Cumulative Cost (1990 $)

Fleet Fuel Economy (mpg)

Annual Fuel Savings (million gallons)

Annual Savings (Million tons CO2 Equivalent)

3% (Marginal tons CO2 Equivalent)

3% ($/ton CO2 Equivalent) $1.00 credit

6% (Marginal tons CO2 Equivalent)

6% ($/ton CO2 Equivalent) $1.00 credit

1

0.00

20.77

0.00

 

0.00

-72.08

0.00

-72.08

2

274.56

24.31

13,241.79

183.70

8.98

-41.52

7.93

-37.45

3

425.57

26.38

19,359.97

268.57

4.15

-35.70

3.66

-30.85

4

562.85

28.00

23,491.05

325.88

2.80

-23.10

2.47

-16.57

5

864.86

30.31

28,628.68

397.15

3.49

14.58

3.08

26.11

6

915.20

31.00

30,020.82

416.46

0.94

-18.78

0.83

-11.69

7

1,121.12

31.77

31,496.47

436.93

1.00

133.63

0.88

161.01

8

1,430.00

32.46

32,764.76

454.53

0.86

286.94

0.76

334.73

9

1,830.40

33.31

34,243.30

475.04

1.00

327.14

0.89

380.28

10

2,516.80

34.00

35,398.27

491.06

0.78

804.02

0.69

920.64

11

3,374.80

34.77

36,627.63

508.12

0.83

956.78

0.74

1,093.74

12

4,919.20

35.62

37,918.59

526.03

0.88

1,691.50

0.77

1,926.26

(continued on page 753)

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 753

(Table E.8 continued from page 752)

Technology Optionsa

10% ($/ton CO2 Equivalent) $1.00 credit

30% (Marginal tons CO2 Equivalent)

30% ($/ton CO2 Equivalent) $1.25 credit

6% Equivalent Fuel Cost ($/gallon)

30% Equivalent Fuel Cost ($/gallon)

1

-72.08

0.00

     

2

-31.73

2.00

65.26

1.23

0.31

3

-29.30

0.92

388.67

1.46

0.37

4

-25.45

0.62

830.41

1.97

0.50

5

-13.29

0.78

1,042.99

3.49

0.88

6

-12.76

0.21

4,282.57

2.14

0.54

7

-2.81

0.22

4,960.44

8.27

2.09

8

12.85

0.19

7,396.44

14.44

3.64

9

31.94

0.22

8,128.27

16.05

4.05

10

66.28

0.17

14,362.20

35.23

8.68

11

107.23

0.19

18,111.84

41.30

10.43

12

777.68

0.19

20,730.88

70.92

17.89

NOTE: Average vehicle fuel economy = 27/1.3 mpg.

aNumbers represent combinations of fuel economy technologies phased in as shown in Table 1 and Figure 3 of Difiglio et al. (1990).

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 754

image

FIGURE E.7 Cost of gasoline and efficiency for a 30 percent discount rate.

for the average new-car fleet efficiencies, along with the average fuel prices for Japan, Sweden, the United Kingdom, the United States, and West Germany, are also plotted as squares on the same figure. The automobile fleet fuel economy values were reduced by a factor of 1.3 since increased urban congestion, higher highway speeds, and a larger fraction of total miles being driven in urban areas are projected to increase the difference between the EPA fuel economy test and actual on-road fuel economy from 15 percent in 1987 to 30 percent in 2010 (Ledbetter and Ross, 1990). Although Difiglio et al. (1990) estimated a 17 percent difference in the year 2000, their fuel economy values were also reduced by the factor 1.3 to be consistent with the other adjustments in Figure E.7. Since the Shackson and Leach (1980) supply curve was for a fleet that included light trucks, no adjustment was made to their base fuel economy of 19.7 mpg.

The perspective in Figure E.7 is that of a consumer expecting a 10-year benefit stream using a 30 percent discount rate on future benefits. If the consumers in these five nations had no preference between purchasing fuel economy technology and avoiding the cost of gasoline, they would choose a set of technologies on one of the three curves. If, on the other hand, consumers valued other attributes in their vehicles sacrificed by fuel economy

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 755

technologies, they would choose a level of fuel economy lower (i.e., to the left) of the curve in Figure E.7.

If a 30 percent discount rate and a 10-year lifetime are valid assumptions, consumers in the United States and West Germany choose a level of fuel economy appropriate for their fuel prices, provided the Shackson and Leach curve is an accurate indication of the cost of technology. The fact that three other nations lie a significant distance from the steepest supply curve indicates either that their vehicle use patterns are dramatically different or that the technology cost-effectiveness information is inappropriate.

To summarize the relative magnitude of the values along with their uncertainties, a sample of average values from two different regions of two different analyses is presented below.

The discontinuity in the slope of the Difiglio curve at approximately 31 mpg (on-road fuel economy) is the point at which sales shifts in the vehicle mix are required to gain higher average fuel economy levels. Difiglio has labeled this point the ''maximum technology" point for the year 2000.2 The panel has chosen the region beyond this point as the region in which life-style adjustments are incurred. Up to this point, the costs of attributes lost or compromised by fuel efficiency technologies are ignored even though consumers consider them substantial.

The average cost-effectiveness values, as distinct from marginal cost-effectiveness values, which increase significantly as one moves past 25 mpg, are summarized in Table E.9 as a function of the discount rate for the three cost curves (see calculations in Tables E.3 through E.8). The costs are constrained, however, by the fact that the panel has not considered cumulative costs exceeding $3850 (1990 dollars) from the Shackson and Leach study, and Ledbetter and Ross did not go beyond cumulative costs of $609 (1990 dollars).

To provide a visual impression of the relative magnitudes and their uncertainties, Figure E.8 illustrates values derived for the discount rate of 6 percent for light duty vehicles. One should keep in mind that data for the automobile and light truck calculations were from three sources, thereby providing the indication of uncertainty.

Notes

1. Throughout this report, tons (t) are metric; 1 Mt = 1 megaton = 1 million tons; 1 Gt = 1 gigaton = 1 billion tons.

2. Subsequent to the preparation of these results, K. G. Duleep (co-author with Difiglio and Green) has refined the estimate of the "maximum technology" point. Duleep estimates that in 1996 all available technologies could produce a CAFE mpg of 29.3 (22.5 on-road) and in 2001 all available technologies could produce a CAFE mpg of 36.0 (27.7 on-road) (Plotkin, 1991).

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 756

TABLE E.9 Implementation Cost of Vehicle Efficiency Improvements

 

Net Implementation Cost ($/t CO2 equivalent)

Emission Reduction (Mt CO2 equivalent/yr)

 

d=3%

d=6%

d=10%

d=30%

NO CHANGE IN FLEET MIX

         

Full-Cycle Emission Accounting

       

Light vehicle, Ledbetter and Ross

-52

-50

-46

-2

379

Light vehicle, Shackson and Leach

-10

-1

+10

+191

389

Light vehicle, Difiglio

-26

-22

-13

+128

397

Heavy truck

-42

-38

-32

+45

61

Aircraft retrofit

   

+230

 

13

Consumption Emission Accounting

       

Light vehicle, Ledbetter and Ross

-81

-78

-71

-3

245

Light vehicle, Shackson and Leach

-16

-2

+16

+296

251

Light vehicle, Difiglio

-40

-34

-20

+198

256

Heavy truck

-65

-59

-50

+70

39

Aircraft retrofit

   

+357

 

8

CHANGE IN FLEET MIX

         

Full-Cycle Emission Accounting

       

Light vehicle, Ledbetter and Ross

+13

+25

+41

+293

35

Light vehicle, Shackson and Leach

+306

+356

+427

+1,609

108

Light vehicle, Difiglio

+527

+657

+777

+2,820

129

Consumption Emission Accounting

       

Light vehicle, Ledbetter and Ross

+20

+39

+64

+454

23

Light vehicle, Shackson and Leach

+474

+552

+663

+2,494

70

Light vehicle, Difiglio

+887

+1,018

+1,204

+4,370

83

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 757

image

FIGURE E.8 Potential emission reduction from light-duty vehicles.

References

Amann, C. A. 1989. The automotive spark-ignition engine—An historical perspective. In History of the Internal Combustion Engine, ICE, Volume 8, Book No. 100294-1989, E. F. C. Somerscales and A. A. Zagotta, eds. American Society of Mechanical Engineers.

Atkinson, S. E., and R. Halvorsen. 1984. A new hedonic technique for estimating attribute demand: An application to the demand for automobile fuel efficiency. Review of Economics and Statistics 66(3):416–426.

Atkinson, S. E., and R. Halvorsen. 1990. Valuation of risks to life: Evidence from the markets for automobiles. Review of Economics and Statistics 72(1):137–142.

Berger, J. O., M. H. Smith, and R. W. Andrews. 1990. A system for Estimating Fuel Economy Potential due to Technology Improvements. Ann Arbor, Mich: The University of Michigan, School of Business Administration.

Bleviss, D. 1988. The New Oil Crisis and Fuel Economy Technologies. New York: Quorum Books.

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×

Page 758

Bussmann, W. V. 1990. Potential Gains in Fuel Economy: A Statistical Analysis of Technologies Embodied in Model Year 1988 and 1989 Cars. Intra-Industry Analysis of Fuel Economy Efficiencies.

Carlsmith, R. S., W. U. Chandler, J. E. McMahon, and D. J. Santini. 1990. Energy Efficiency: How Far Can We Go? Report ORNL/TM-11441. Prepared for the Office of Policy, Planning and Analysis, U.S. Department of Energy. Oak Ridge, Tenn.: Oak Ridge National Laboratory.

Davis, S. C., D. B. Shonka, G. J. Anderson-Batiste, and P. S. Hu. 1989. Transportation Energy Data Book: Edition 10. Report ORNL-6565 (Edition 10 of ORNL-5198). Prepared for the U.S. Department of Energy. Oak Ridge, Tenn.: Oak Ridge National Laboratory.

Difiglio, C., K. G. Duleep, and D. L. Greene. 1990. Cost effectiveness of future fuel economy improvements. The Energy Journal 11(1):65–86.

Energy and Environmental Analysis (EEA). 1984. Documentation of market penetration forecasts. In Historical and Projected Emissions Conversion Factor and Fuel Economy for Heavy Duty Trucks, 1962–2002. Arlington, Va.: Energy and Environmental Analysis, Inc.

Godek, P. E. 1990. The Corporate Average Fuel Economy Standard 1978–1990. Working Paper, October 1990.

Greene, D. L. 1989. CAFE or Price?: An Analysis of the Effects of Federal Fuel Economy Regulations and Gasoline Price on New Car MPG, 1978–89. Prepared for the Office of Policy Integration, Office of Policy, Planning and Analysis, U.S. Department of Energy. November 1989. Washington, D.C.: U.S. Department of Energy.

Ledbetter, M., and M. Ross. 1989. Supply curves of conserved energy for automobiles. Draft paper prepared for Lawrence Berkeley Laboratory by the American Council for an Energy-Efficient Economy, Washington, D.C.

Leone, R. A., and Parkinson, T. W. 1990. Conserving energy: Is there a better way? Paper prepared for the Association of International Automobile Manufacturers.

Plotkin, S. E. 1991. Testimony before Senate Committee on Energy and Natural Resources. Washington, D.C.: Office of Technology Assessment. March 20, 1991.

Schipper, L. 1991. Energy saving in the U.S. and other wealthy countries: Can the momentum be maintained? Draft. International Energy Studies, Energy Analysis Program, Applied Science Division, Lawrence Berkeley Laboratory.

Shackson, R. H., and H. J. Leach. 1980. Using Fuel Economy and Synthetic Fuels to Compete with OPEC Oil. Pittsburgh, Pa.: Carnegie-Mellon University Press.

Unnasch, S., C. B. Moyer, D. D. Lowell, and M. D. Jackson. 1989. Comparing the Impact of Different Transportation Fuels on the Greenhouse Effect. Prepared by the Acurex Corporation for the California Energy Commission. April 1989. Sacramento: California Energy Commission.

Wright, J., A. Meier, M. Maulhardt, and A. H. Rosenfeld. 1981. Supplying Energy Through Greater Efficiency: The Potential for Conservation in California's Residential Sector. Report LBL-10738, EEB 80-2. January 1981. Berkeley, Calif.: Lawrence Berkeley Laboratory.

Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 727
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 728
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 729
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 730
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 731
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 732
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 733
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 734
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 735
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 736
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 737
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 738
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 739
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 740
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 741
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 742
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 743
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 744
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 745
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 746
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 747
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 748
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 749
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 750
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 751
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 752
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 753
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 754
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 755
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 756
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 757
Suggested Citation:"E Conservation Supply Data for Three Transportation Sectors." Institute of Medicine, National Academy of Sciences, and National Academy of Engineering. 1992. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, DC: The National Academies Press. doi: 10.17226/1605.
×
Page 758
Next: F Transportation System Management »
Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base Get This Book
×
Buy Hardback | $100.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Global warming continues to gain importance on the international agenda and calls for action are heightening. Yet, there is still controversy over what must be done and what is needed to proceed.

Policy Implications of Greenhouse Warming describes the information necessary to make decisions about global warming resulting from atmospheric releases of radiatively active trace gases. The conclusions and recommendations include some unexpected results. The distinguished authoring committee provides specific advice for U.S. policy and addresses the need for an international response to potential greenhouse warming.

It offers a realistic view of gaps in the scientific understanding of greenhouse warming and how much effort and expense might be required to produce definitive answers.

The book presents methods for assessing options to reduce emissions of greenhouse gases into the atmosphere, offset emissions, and assist humans and unmanaged systems of plants and animals to adjust to the consequences of global warming.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!