National Academies Press: OpenBook

Statistical Analysis of Massive Data Streams: Proceedings of a Workshop (2004)

Chapter: Bayesian Hierarchical Model for Surface Winds in the Tropics

« Previous: Blending QSCAT and Weather-Center Analysis Winds
Suggested Citation:"Bayesian Hierarchical Model for Surface Winds in the Tropics." National Research Council. 2004. Statistical Analysis of Massive Data Streams: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11098.
×
Page 55

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

GLOBAL AND REGIONAL SURFACE WIND FIELD INFERENCES FROM SPACE-BORNE SCATTEROMETER DATA 55 blended field is consistent with power-law spectral properties observed by the QSCAT. The third panel shows the wind stress curl for the blended field. The blended winds have been used to drive regional and global ocean model simulations. Milliff et al. (1999) demonstrated realistic enhancements to the response of a relatively coarse-resolution ocean general circulation model (OGCM) to the higher-wavenumber winds in the blended product. Higher resolution OGCM experiments are in progress now. Bayesian Inference for Surface Winds in the Labrador Sea The Labrador Sea is one of a very few locations in the world ocean where surface exchanges of heat, momentum and fresh water can drive the process of ocean deep convection. Ocean deep convection can be envisioned as the energetic downward branch of the so-called global ocean conveyor belt cartoon for the thermohaline general circulation that is important in the dynamics of the Earth climate. The energetic exchanges at the surface are often associated with polar low synoptic events in the Labrador Sea. A Bayesian statistical model has been designed to exploit the areal coverage of scatterometer observations, and provide estimates of uncertainty in the surface vector wind inferences for the Labrador Sea. Here, the scatterometer system is the NASA Scatterometer or NSCAT system that preceded QS-CAT. It has proved convenient to organize the Bayesian model components in stages. Data Model Stage distributions are specified almost directly from precise information that naturally arises in the calibration and validation of satellite observing systems. The Prior Model Stage (stochastic geostrophy) invokes a simple autonomous balance between surface pressure (a hidden process in our model) and the surface winds. The posterior distribution for the surface vector winds is obtained from the output of a Gibbs sampler. An application of the Labrador Sea model for surface winds will be described at the end of this presentation. The first documentation of this model appears in Royle et al. (1998). Bayesian Hierarchical Model for Surface Winds in the Tropics The Bayesian Hierarchical Model (BHM) methodology is extended in a model for tropical surface winds in the Indian and western Pacific Ocean that derives from Chris Wikle's postdoctoral work (Wikle et al., 2001). Here, the Data Model Stage reflects measurement error distributions for QSCAT in the tropics as well as for the surface winds from the NCEP analysis. The Prior Model Stage is prescribed in two parts. For large scales, the length scales

Next: A Bayesian Hierarchical Air-Sea Interaction Model »
Statistical Analysis of Massive Data Streams: Proceedings of a Workshop Get This Book
×
 Statistical Analysis of Massive Data Streams: Proceedings of a Workshop
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Massive data streams, large quantities of data that arrive continuously, are becoming increasingly commonplace in many areas of science and technology. Consequently development of analytical methods for such streams is of growing importance. To address this issue, the National Security Agency asked the NRC to hold a workshop to explore methods for analysis of streams of data so as to stimulate progress in the field. This report presents the results of that workshop. It provides presentations that focused on five different research areas where massive data streams are present: atmospheric and meteorological data; high-energy physics; integrated data systems; network traffic; and mining commercial data streams. The goals of the report are to improve communication among researchers in the field and to increase relevant statistical science activity.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!