National Academies Press: OpenBook
« Previous: IV. CONCLUSIONS
Suggested Citation:"REFERENCES." National Research Council. 2004. Statistical Analysis of Massive Data Streams: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/11098.
×
Page 189

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

INCORPORATING INVARIANTS IN MAHALANOBIS DISTANCE-BASED CLASSIFIERS: APPLICATIONS TO FACE 189 RECOGNITION the preprocessing algorithms, we suspect that much of the improvement is due to similarities between the transformations we handle and differences between images. For example, a smile is probably something like a dilation in the horizontal direction. V. ACKNOWLEDGMENT This work was supported by a LANL 2002 Homeland defense LDRD-ER (PI K. Vixie) and a LANL 2003 LDRD- DR (PI J. Kamm). REFERENCES [1] A.S.Georghiades, P.N.Belhumeur, and D.J.Kriegman, “From few to many: Illumination cone models for face recognition under variable lighting and pose,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 643–660, June 2001. [2] P.Y.Simard, Y.A. L.Cun, J.S.Denker, and B.Victorri, “Transformation invariance in pattern recognition—tangent distance and tangent propagation,” in Neural Networks: Tricks of the Trade, G.B.Orr and K.-R.Muller, Eds. Springer, 1998, ch. 12. [3] P.Y.Simard, Y.A.Cun, J.S.Denker, and B.Victorri, “Transformation invariance in pattern recognition: Tangent distance and propagation,” International Journal of Imaging Systems and Technology, vol. 11, no. 3, pp. 181–197, 2000. [4] A.Fraser, N.Hengartner, K.Vixie, and B.Wohlberg, “Classification modulo invariance, with application to face recognition,” Journal of Computational and Graphical Statistics, 2003, invited paper, in preparation. [5] P.J.Phillips, H.Moon, P.J.Rauss, and S.Rizvi, “The feret evaluation methodology for face recognition algorithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 10, Oct. 2000, available as report NISTR 6264. [6] J.R.Beveridge, K.She, B.Draper, and G.H.Givens, “A nonparametric statistical comparison of principal component and linear discriminant subspaces for face recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2001. [Online]. Available: http://www.cs.colostate.edu/evalfacerec/index.html [7] R.Beveridge, “Evaluation of face recognition algorithms web site.” http://www.cs.colostate.edu/evalfacerec/, Oct. 2002. [8] M.Turk and A.Pentland, “Face recognition using eigenfaces,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, Maui, HI, USA, 1991. [9] W.Zhao, R.Chellappa, and A.Krishnaswamy, “Discriminant analysis of principal components for face recognition,” in Face Recognition: From Theory to Applications, Wechsler, Phillips, Bruce, Fogelman-Soulie, and Huang, Eds., 1998, pp. 73–85.

Next: John Elder Ensembles of Models: Simplicity (of Function) Through Complexity (of Form) »
Statistical Analysis of Massive Data Streams: Proceedings of a Workshop Get This Book
×
 Statistical Analysis of Massive Data Streams: Proceedings of a Workshop
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Massive data streams, large quantities of data that arrive continuously, are becoming increasingly commonplace in many areas of science and technology. Consequently development of analytical methods for such streams is of growing importance. To address this issue, the National Security Agency asked the NRC to hold a workshop to explore methods for analysis of streams of data so as to stimulate progress in the field. This report presents the results of that workshop. It provides presentations that focused on five different research areas where massive data streams are present: atmospheric and meteorological data; high-energy physics; integrated data systems; network traffic; and mining commercial data streams. The goals of the report are to improve communication among researchers in the field and to increase relevant statistical science activity.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!